Department of Cell Biology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, USA.
Aging Cell. 2011 Oct;10(5):761-8. doi: 10.1111/j.1474-9726.2011.00718.x. Epub 2011 Jun 1.
Progressive telomere shortening from cell division (replicative aging) provides a barrier for human tumor progression. This program is not conserved in laboratory mice, which have longer telomeres and constitutive telomerase. Wild species that do/do not use replicative aging have been reported, but the evolution of different phenotypes and a conceptual framework for understanding their uses of telomeres is lacking. We examined telomeres/telomerase in cultured cells from > 60 mammalian species to place different uses of telomeres in a broad mammalian context. Phylogeny-based statistical analysis reconstructed ancestral states. Our analysis suggested that the ancestral mammalian phenotype included short telomeres (< 20 kb, as we now see in humans) and repressed telomerase. We argue that the repressed telomerase was a response to a higher mutation load brought on by the evolution of homeothermy. With telomerase repressed, we then see the evolution of replicative aging. Telomere length inversely correlated with lifespan, while telomerase expression co-evolved with body size. Multiple independent times smaller, shorter-lived species changed to having longer telomeres and expressing telomerase. Trade-offs involving reducing the energetic/cellular costs of specific oxidative protection mechanisms (needed to protect < 20 kb telomeres in the absence of telomerase) could explain this abandonment of replicative aging. These observations provide a conceptual framework for understanding different uses of telomeres in mammals, support a role for human-like telomeres in allowing longer lifespans to evolve, demonstrate the need to include telomere length in the analysis of comparative studies of oxidative protection in the biology of aging, and identify which mammals can be used as appropriate model organisms for the study of the role of telomeres in human cancer and aging.
端粒的缩短会限制人类肿瘤的进展。但是实验室的老鼠并不会出现这种情况,因为它们的端粒较长且有组成型的端粒酶。已经有报告称,有些野生物种会/不会经历复制性衰老,但是缺乏对不同表型的进化以及理解它们使用端粒的概念框架。我们检测了来自 60 多种哺乳动物的培养细胞中端粒/端粒酶,以在广泛的哺乳动物背景下研究不同的端粒用途。基于系统发育的统计分析重建了祖先的状态。我们的分析表明,祖先哺乳动物的表型包括短的端粒(<20kb,就像我们现在在人类中看到的那样)和受抑制的端粒酶。我们认为,受抑制的端粒酶是由于体温调节进化带来的更高突变负荷的反应。随着端粒酶的抑制,我们看到了复制性衰老的进化。端粒长度与寿命成反比,而端粒酶的表达与体型共同进化。多个体型较小、寿命较短的独立物种发生了变化,端粒变长,端粒酶表达增强。涉及减少特定氧化保护机制的能量/细胞成本的权衡(在没有端粒酶的情况下需要保护<20kb 的端粒)可以解释这种复制性衰老的放弃。这些观察结果为理解哺乳动物中端粒的不同用途提供了一个概念框架,支持了类人端粒在允许更长寿命进化中的作用,证明了在衰老生物学中进行氧化保护的比较研究时需要考虑端粒长度,并确定哪些哺乳动物可以作为研究端粒在人类癌症和衰老中作用的适当模型生物。