Suppr超能文献

成年神经元中骨形态发生蛋白/Smad1 信号通路的激活可促进损伤脊髓轴突的再生。

Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad1 signaling pathway in adult neurons.

机构信息

Fishberg Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 May 10;108(19):E99-107. doi: 10.1073/pnas.1100426108. Epub 2011 Apr 25.

Abstract

Axon growth potential is highest in young neurons but diminishes with age, thus becoming a significant obstacle to axonal regeneration after injury in maturity. The mechanism for the decline is incompletely understood, and no effective clinical treatment is available to rekindle innate growth capability. Here, we show that Smad1-dependent bone morphogenetic protein (BMP) signaling is developmentally regulated and governs axonal growth in dorsal root ganglion (DRG) neurons. Down-regulation of the pathway contributes to the age-related decline of the axon growth potential. Reactivating Smad1 selectively in adult DRG neurons results in sensory axon regeneration in a mouse model of spinal cord injury (SCI). Smad1 signaling can be effectively manipulated by an adeno-associated virus (AAV) vector encoding BMP4 delivered by a clinically applicable and minimally invasive technique, an approach devoid of unwanted abnormalities in mechanosensation or pain perception. Importantly, transected axons are able to regenerate even when the AAV treatment is delivered after SCI, thus mimicking a clinically relevant scenario. Together, our results identify a therapeutic target to promote axonal regeneration after SCI.

摘要

轴突的生长潜力在年轻神经元中最高,但随着年龄的增长而减弱,因此成为成熟后损伤后轴突再生的一个重大障碍。其衰退的机制尚不完全清楚,也没有有效的临床治疗方法来重新激发固有生长能力。在这里,我们表明 Smad1 依赖性骨形态发生蛋白 (BMP) 信号在发育过程中受到调节,并控制背根神经节 (DRG) 神经元中的轴突生长。该途径的下调导致与年龄相关的轴突生长潜力下降。在脊髓损伤 (SCI) 的小鼠模型中,选择性地在成年 DRG 神经元中重新激活 Smad1,可导致感觉轴突再生。可以通过腺相关病毒 (AAV) 载体有效操纵 Smad1 信号,该载体通过临床应用和微创技术来编码 BMP4,该方法不会引起机械感觉或疼痛感知的不必要的异常。重要的是,即使在 SCI 后给予 AAV 治疗,也可以使切断的轴突再生,从而模拟临床相关的情况。总之,我们的研究结果确定了一个治疗靶点,以促进 SCI 后的轴突再生。

相似文献

1
Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad1 signaling pathway in adult neurons.
Proc Natl Acad Sci U S A. 2011 May 10;108(19):E99-107. doi: 10.1073/pnas.1100426108. Epub 2011 Apr 25.
2
BMP4/Smad1 Signalling Promotes Spinal Dorsal Column Axon Regeneration and Functional Recovery After Injury.
Mol Neurobiol. 2019 Oct;56(10):6807-6819. doi: 10.1007/s12035-019-1555-9. Epub 2019 Mar 28.
6
Upregulating Lin28a Promotes Axon Regeneration in Adult Mice with Optic Nerve and Spinal Cord Injury.
Mol Ther. 2020 Aug 5;28(8):1902-1917. doi: 10.1016/j.ymthe.2020.04.010. Epub 2020 Apr 15.
7
Depolarization and electrical stimulation enhance in vitro and in vivo sensory axon growth after spinal cord injury.
Exp Neurol. 2018 Feb;300:247-258. doi: 10.1016/j.expneurol.2017.11.011. Epub 2017 Nov 26.
8
Activation of the BMP4/Smad1 Pathway Promotes Retinal Ganglion Cell Survival and Axon Regeneration.
Invest Ophthalmol Vis Sci. 2019 Apr 1;60(5):1748-1759. doi: 10.1167/iovs.18-26449.
9
miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair.
J Neurosci. 2016 Aug 10;36(32):8516-32. doi: 10.1523/JNEUROSCI.0735-16.2016.
10
Epigenetic regulation of sensory axon regeneration after spinal cord injury.
J Neurosci. 2013 Dec 11;33(50):19664-76. doi: 10.1523/JNEUROSCI.0589-13.2013.

引用本文的文献

1
Blueprints for healing: central nervous system regeneration in zebrafish and neonatal mice.
BMC Biol. 2025 Apr 30;23(1):115. doi: 10.1186/s12915-025-02203-0.
2
Cycloastragenol promotes dorsal column axon regeneration in mice.
Front Cell Neurosci. 2025 Jan 3;18:1424137. doi: 10.3389/fncel.2024.1424137. eCollection 2024.
3
Tppp3 is a novel molecule for retinal ganglion cell identification and optic nerve regeneration.
Acta Neuropathol Commun. 2024 Dec 29;12(1):204. doi: 10.1186/s40478-024-01917-6.
7
Aryl hydrocarbon receptor restricts axon regeneration of DRG neurons in response to injury.
bioRxiv. 2024 Sep 14:2023.11.04.565649. doi: 10.1101/2023.11.04.565649.
8
Circadian clock regulator Bmal1 gates axon regeneration via Tet3 epigenetics in mouse sensory neurons.
Nat Commun. 2023 Aug 24;14(1):5165. doi: 10.1038/s41467-023-40816-7.
9
Customization of the translational complex regulates mRNA-specific translation to control CNS regeneration.
Neuron. 2023 Sep 20;111(18):2881-2898.e12. doi: 10.1016/j.neuron.2023.06.005. Epub 2023 Jul 12.

本文引用的文献

1
An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke.
Nat Neurosci. 2010 Dec;13(12):1496-504. doi: 10.1038/nn.2674. Epub 2010 Nov 7.
2
PTEN deletion enhances the regenerative ability of adult corticospinal neurons.
Nat Neurosci. 2010 Sep;13(9):1075-81. doi: 10.1038/nn.2603. Epub 2010 Aug 8.
3
Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice.
Neuron. 2010 Jun 10;66(5):663-70. doi: 10.1016/j.neuron.2010.05.002.
4
Neuronal intrinsic barriers for axon regeneration in the adult CNS.
Curr Opin Neurobiol. 2010 Aug;20(4):510-8. doi: 10.1016/j.conb.2010.03.013. Epub 2010 Apr 24.
5
BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury.
J Neurosci. 2010 Feb 3;30(5):1839-55. doi: 10.1523/JNEUROSCI.4459-09.2010.
6
SOCS3 deletion promotes optic nerve regeneration in vivo.
Neuron. 2009 Dec 10;64(5):617-23. doi: 10.1016/j.neuron.2009.11.021.
8
PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration.
Science. 2009 Oct 23;326(5952):592-6. doi: 10.1126/science.1178310. Epub 2009 Oct 15.
9
KLF family members regulate intrinsic axon regeneration ability.
Science. 2009 Oct 9;326(5950):298-301. doi: 10.1126/science.1175737.
10
Overcoming macrophage-mediated axonal dieback following CNS injury.
J Neurosci. 2009 Aug 12;29(32):9967-76. doi: 10.1523/JNEUROSCI.1151-09.2009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验