Fachbereich Chemie and State Reaserch Center OPTIMAS, TU Kaiserslautern, Erwin-Schrödinger-Strasse 52-54, 67663 Kaiserslautern, Germany.
J Am Chem Soc. 2011 May 18;133(19):7428-49. doi: 10.1021/ja111389r. Epub 2011 Apr 26.
The ruthenium-catalyzed hydroamidation of terminal alkynes has evolved to become a broadly applicable tool for the synthesis of enamides and enimides. Depending on the catalyst system employed, the reaction leads chemo-, regio-, and stereoselectively to a single diastereoisomer. Herein, we present a comprehensive mechanistic study of the ruthenium-catalyzed hydroamidation of terminal alkynes, which includes deuterium-labeling, in situ IR, in situ NMR, and in situ ESI-MS experiments complemented by computational studies. The results support the involvement of ruthenium-hydride and ruthenium-vinylidene species as the key intermediates. They are best explained by a reaction pathway that consists of an oxidative addition of the amide, followed by insertion of a π-coordinated alkyne into a ruthenium-hydride bond, rearrangement to a vinylidene species, nucleophilic attack of the amide, and finally reductive elimination of the product.
钌催化的末端炔烃的氢氨化反应已经发展成为一种广泛应用的合成酰胺和亚胺的工具。根据所采用的催化剂体系,反应具有化学选择性、区域选择性和立体选择性,得到单一的非对映异构体。在此,我们对钌催化的末端炔烃的氢氨化反应进行了全面的机理研究,包括氘标记、原位 IR、原位 NMR 和原位 ESI-MS 实验,并辅以计算研究。结果支持了钌氢化物和钌亚乙烯基物种作为关键中间体的参与。它们最好通过一个反应途径来解释,该途径包括酰胺的氧化加成,然后是π 配位的炔烃插入到钌-氢化物键中,重排为亚乙烯基物种,酰胺的亲核进攻,最后是产物的还原消除。