Poulin Patrick, Jones Hannah M, Jones Rhys Do, Yates James W T, Gibson Christopher R, Chien Jenny Y, Ring Barbara J, Adkison Kimberly K, He Handan, Vuppugalla Ragini, Marathe Punit, Fischer Volker, Dutta Sandeep, Sinha Vikash K, Björnsson Thorir, Lavé Thierry, Ku M Sherry
Leader Consultant, 4009 Sylvia Daoust, Québec city, Québec, Canada, G1X 0A6.
J Pharm Sci. 2011 Oct;100(10):4050-73. doi: 10.1002/jps.22554. Epub 2011 Apr 26.
This study is part of the Pharmaceutical Research and Manufacturers of America (PhRMA) initiative on predictive models of efficacy, safety, and compound properties. The overall goal of this part was to assess the predictability of human pharmacokinetics (PK) from preclinical data and to provide comparisons of available prediction methods from the literature, as appropriate, using a representative blinded dataset of drug candidates. The key objectives were to (i) appropriately assemble and blind a diverse dataset of in vitro, preclinical in vivo, and clinical data for multiple drug candidates, (ii) evaluate the dataset with empirical and physiological methodologies from the literature used to predict human PK properties and plasma concentration-time profiles, (iii) compare the predicted properties with the observed clinical data to assess the prediction accuracy using routine statistical techniques and to evaluate prediction method(s) based on the degree of accuracy of each prediction method, and (iv) compile and summarize results for publication. Another objective was to provide a mechanistic understanding as to why one methodology provided better predictions than another, after analyzing the poor predictions. A total of 108 clinical lead compounds were collected from 12 PhRMA member companies. This dataset contains intravenous (n = 19) and oral pharmacokinetic data (n = 107) in humans as well as the corresponding preclinical in vitro, in vivo, and physicochemical data. All data were blinded to protect the anonymity of both the data and the company submitting the data. This manuscript, which is the first of a series of manuscripts, summarizes the PhRMA initiative and the 108 compound dataset. More details on the predictability of each method are reported in companion manuscripts.
本研究是美国制药研究与制造商协会(PhRMA)关于疗效、安全性和化合物特性预测模型计划的一部分。本部分的总体目标是评估从临床前数据预测人体药代动力学(PK)的可预测性,并酌情使用具有代表性的候选药物盲态数据集,对文献中可用的预测方法进行比较。关键目标包括:(i)适当地汇总并对多种候选药物的体外、临床前体内和临床数据的多样化数据集进行盲态处理;(ii)使用文献中的经验方法和生理学方法评估该数据集,以预测人体PK特性和血浆浓度-时间曲线;(iii)将预测特性与观察到的临床数据进行比较,使用常规统计技术评估预测准确性,并根据每种预测方法的准确程度评估预测方法;(iv)汇编并总结结果以供发表。另一个目标是在分析预测不佳的原因后,对一种方法比另一种方法提供更好预测的原因提供机制性理解。总共从12家PhRMA成员公司收集了108种临床先导化合物。该数据集包含人体静脉注射(n = 19)和口服药代动力学数据(n = 107)以及相应的临床前体外、体内和理化数据。所有数据均进行了盲态处理,以保护数据和提交数据的公司的匿名性。本手稿是一系列手稿中的第一篇,总结了PhRMA计划和108种化合物数据集。各方法可预测性的更多详细信息在配套手稿中报告。