Suppr超能文献

microRNA-758 通过对 ATP 结合盒转运蛋白 A1 的转录后抑制调节胆固醇外排。

MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1.

机构信息

Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, USA.

出版信息

Arterioscler Thromb Vasc Biol. 2011 Nov;31(11):2707-14. doi: 10.1161/ATVBAHA.111.232066.

Abstract

OBJECTIVE

The ATP-binding cassette transporter A1 (ABCA1) is a major regulator of macrophage cholesterol efflux and protects cells from excess intracellular cholesterol accumulation; however, the mechanism involved in posttranscriptional regulation of ABCA1 is poorly understood. We previously showed that microRNA-33 (miR-33) is 1 regulator. Here, we investigated the potential contribution of other microRNAs (miRNAs) to posttranscriptional regulation of ABCA1 and macrophage cholesterol efflux.

METHODS AND RESULTS

We performed a bioinformatic analysis for identifying miRNA target prediction sites in ABCA1 gene and an unbiased genome-wide screen to identify miRNAs modulated by cholesterol excess in mouse peritoneal macrophages. Quantitative real-time reverse transcription-polymerase chain reaction confirmed that miR-758 is repressed in cholesterol-loaded macrophages. Under physiological conditions, high dietary fat excess in mice repressed miR-758 both in peritoneal macrophages and, to a lesser extent, in the liver. In mouse and human cells in vitro, miR-758 repressed the expression of ABCA1, and conversely, the inhibition of this miRNA by using anti-miR-758 increased ABCA1 expression. In mouse cells, miR-758 reduced cellular cholesterol efflux to apolipoprotein A1 (apoA1), and anti-miR-758 increased it. miR-758 directly targets the 3'-untranslated region of Abca1 as assessed by 3'-untranslated region luciferase reporter assays. Interestingly, miR-758 is highly expressed in the brain, where it also targets several genes involved in neurological functions, including Slc38a1, Ntm, Epha7, and Mytl1.

CONCLUSION

We identified miR-758 as a novel miRNA that posttranscriptionally controls ABCA1 levels in different cells and regulates macrophage cellular cholesterol efflux to apoA1, opening new avenues to increase apoA1 and raise high-density lipoprotein levels.

摘要

目的

三磷酸腺苷结合盒转运体 A1(ABCA1)是调节巨噬细胞胆固醇流出和防止细胞内胆固醇过度积累的主要调节因子;然而,其转录后调控机制尚不清楚。我们之前研究表明 microRNA-33(miR-33)是 1 个调节因子。在此,我们研究了其他 microRNAs(miRNAs)对 ABCA1 和巨噬细胞胆固醇流出的转录后调控的潜在贡献。

方法和结果

我们进行了生物信息学分析,以确定 ABCA1 基因中 miRNA 靶预测位点,并进行了无偏见的全基因组筛选,以鉴定胆固醇过量调节的小鼠腹腔巨噬细胞中的 miRNAs。实时定量逆转录聚合酶链反应证实,miR-758 在胆固醇负荷巨噬细胞中受到抑制。在生理条件下,小鼠高饮食脂肪过量会抑制腹腔巨噬细胞和肝脏中 miR-758 的表达。在体外的小鼠和人类细胞中,miR-758 抑制 ABCA1 的表达,反之,用抗 miR-758 抑制该 miRNA 则增加 ABCA1 的表达。在小鼠细胞中,miR-758 降低了细胞胆固醇向载脂蛋白 A1(apoA1)的流出,而抗 miR-758 则增加了它。通过 3'非翻译区荧光素酶报告基因测定评估,miR-758 可直接靶向 Abca1 的 3'非翻译区。有趣的是,miR-758 在大脑中表达水平较高,在大脑中,它还靶向参与神经功能的几个基因,包括 Slc38a1、Ntm、Epha7 和 Mytl1。

结论

我们确定 miR-758 是一种新的 miRNA,可在不同细胞中转录后控制 ABCA1 水平,并调节巨噬细胞细胞胆固醇向 apoA1 的流出,为增加 apoA1 和提高高密度脂蛋白水平开辟了新途径。

相似文献

1
MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1.
Arterioscler Thromb Vasc Biol. 2011 Nov;31(11):2707-14. doi: 10.1161/ATVBAHA.111.232066.
2
MicroRNA-20a/b regulates cholesterol efflux through post-transcriptional repression of ATP-binding cassette transporter A1.
Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Sep;1862(9):929-938. doi: 10.1016/j.bbalip.2017.06.002. Epub 2017 Jun 8.
4
Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144.
Circ Res. 2013 Jun 7;112(12):1592-601. doi: 10.1161/CIRCRESAHA.112.300626. Epub 2013 Mar 21.
6
MicroRNA-19b promotes macrophage cholesterol accumulation and aortic atherosclerosis by targeting ATP-binding cassette transporter A1.
Atherosclerosis. 2014 Sep;236(1):215-26. doi: 10.1016/j.atherosclerosis.2014.07.005. Epub 2014 Jul 18.
7
MiR-33 contributes to the regulation of cholesterol homeostasis.
Science. 2010 Jun 18;328(5985):1570-3. doi: 10.1126/science.1189862. Epub 2010 May 13.
8
Delivery of MicroRNAs by Chitosan Nanoparticles to Functionally Alter Macrophage Cholesterol Efflux in Vitro and in Vivo.
ACS Nano. 2019 Jun 25;13(6):6491-6505. doi: 10.1021/acsnano.8b09679. Epub 2019 Jun 12.
9
Pro-apoptotic miRNA-128-2 modulates ABCA1, ABCG1 and RXRα expression and cholesterol homeostasis.
Cell Death Dis. 2013 Aug 29;4(8):e780. doi: 10.1038/cddis.2013.301.
10
Diosgenin inhibits atherosclerosis via suppressing the MiR-19b-induced downregulation of ATP-binding cassette transporter A1.
Atherosclerosis. 2015 May;240(1):80-9. doi: 10.1016/j.atherosclerosis.2015.02.044. Epub 2015 Feb 24.

引用本文的文献

1
Advances in the Regulation of Lipid Metabolism by Non-Coding RNAs.
Animals (Basel). 2025 Sep 7;15(17):2621. doi: 10.3390/ani15172621.
3
MicroRNAs Associated with IgLON Cell Adhesion Molecule Expression.
Curr Issues Mol Biol. 2024 Jul 19;46(7):7702-7718. doi: 10.3390/cimb46070456.
5
Advances in the regulation of adipogenesis and lipid metabolism by exosomal ncRNAs and their role in related metabolic diseases.
Front Cell Dev Biol. 2023 Sep 18;11:1173904. doi: 10.3389/fcell.2023.1173904. eCollection 2023.
6
Functional significance of cholesterol metabolism in cancer: from threat to treatment.
Exp Mol Med. 2023 Sep;55(9):1982-1995. doi: 10.1038/s12276-023-01079-w. Epub 2023 Sep 1.
8
The potential role and mechanism of circRNA/miRNA axis in cholesterol synthesis.
Int J Biol Sci. 2023 May 29;19(9):2879-2896. doi: 10.7150/ijbs.84994. eCollection 2023.
9
The potential role and mechanism of circRNAs in foam cell formation.
Noncoding RNA Res. 2023 Mar 21;8(3):315-325. doi: 10.1016/j.ncrna.2023.03.005. eCollection 2023 Sep.
10
The diverse roles of macrophages in metabolic inflammation and its resolution.
Front Cell Dev Biol. 2023 Mar 13;11:1147434. doi: 10.3389/fcell.2023.1147434. eCollection 2023.

本文引用的文献

1
MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo.
Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17321-6. doi: 10.1073/pnas.1008499107. Epub 2010 Sep 20.
2
The widespread regulation of microRNA biogenesis, function and decay.
Nat Rev Genet. 2010 Sep;11(9):597-610. doi: 10.1038/nrg2843. Epub 2010 Jul 27.
3
miR-33 links SREBP-2 induction to repression of sterol transporters.
Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12228-32. doi: 10.1073/pnas.1005191107. Epub 2010 Jun 21.
4
MiR-33 contributes to the regulation of cholesterol homeostasis.
Science. 2010 Jun 18;328(5985):1570-3. doi: 10.1126/science.1189862. Epub 2010 May 13.
5
MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis.
Science. 2010 Jun 18;328(5985):1566-9. doi: 10.1126/science.1189123. Epub 2010 May 13.
6
Genetic connections between neurological disorders and cholesterol metabolism.
J Lipid Res. 2010 Sep;51(9):2489-503. doi: 10.1194/jlr.R006338. Epub 2010 May 13.
7
8
Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection.
Science. 2010 Jan 8;327(5962):198-201. doi: 10.1126/science.1178178. Epub 2009 Dec 3.
9
Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses.
Arterioscler Thromb Vasc Biol. 2010 Feb;30(2):139-43. doi: 10.1161/ATVBAHA.108.179283. Epub 2009 Oct 1.
10
Cholesterol involvement in the pathogenesis of neurodegenerative diseases.
Mol Cell Neurosci. 2010 Jan;43(1):33-42. doi: 10.1016/j.mcn.2009.07.013. Epub 2009 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验