Suppr超能文献

拟南芥大孢子母细胞转录组分析揭示 RNA 解旋酶在植物生殖细胞发育中的重要性。

Transcriptome analysis of the Arabidopsis megaspore mother cell uncovers the importance of RNA helicases for plant germline development.

机构信息

Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland.

出版信息

PLoS Biol. 2011 Sep;9(9):e1001155. doi: 10.1371/journal.pbio.1001155. Epub 2011 Sep 20.

Abstract

Germ line specification is a crucial step in the life cycle of all organisms. For sexual plant reproduction, the megaspore mother cell (MMC) is of crucial importance: it marks the first cell of the plant "germline" lineage that gets committed to undergo meiosis. One of the meiotic products, the functional megaspore, subsequently gives rise to the haploid, multicellular female gametophyte that harbours the female gametes. The MMC is formed by selection and differentiation of a single somatic, sub-epidermal cell in the ovule. The transcriptional network underlying MMC specification and differentiation is largely unknown. We provide the first transcriptome analysis of an MMC using the model plant Arabidopsis thaliana with a combination of laser-assisted microdissection and microarray hybridizations. Statistical analyses identified an over-representation of translational regulation control pathways and a significant enrichment of DEAD/DEAH-box helicases in the MMC transcriptome, paralleling important features of the animal germline. Analysis of two independent T-DNA insertion lines suggests an important role of an enriched helicase, MNEME (MEM), in MMC differentiation and the restriction of the germline fate to only one cell per ovule primordium. In heterozygous mem mutants, additional enlarged MMC-like cells, which sometimes initiate female gametophyte development, were observed at higher frequencies than in the wild type. This closely resembles the phenotype of mutants affected in the small RNA and DNA-methylation pathways important for epigenetic regulation. Importantly, the mem phenotype shows features of apospory, as female gametophytes initiate from two non-sister cells in these mutants. Moreover, in mem gametophytic nuclei, both higher order chromatin structure and the distribution of LIKE HETEROCHROMATIN PROTEIN1 were affected, indicating epigenetic perturbations. In summary, the MMC transcriptome sets the stage for future functional characterization as illustrated by the identification of MEM, a novel gene involved in the restriction of germline fate.

摘要

生殖细胞的特化是所有生物生命周期中的一个关键步骤。对于有性植物繁殖而言,大孢子母细胞(MMC)至关重要:它标志着植物“生殖系”谱系中第一个经历减数分裂的细胞。减数分裂的产物之一,功能性大孢子,随后产生具有雌性配子的单倍体、多细胞雌性配子体。MMC 是由胚珠中单个体细胞、亚表皮细胞的选择和分化形成的。MMC 特化和分化的转录网络在很大程度上尚不清楚。我们使用模式植物拟南芥进行了 MMC 的首次转录组分析,结合了激光辅助显微切割和微阵列杂交。统计分析确定了翻译调控控制途径的过度表达,并且在 MMC 转录组中 DEAD/DEAH 盒解旋酶的丰度显著富集,与动物生殖系的重要特征相平行。对两个独立的 T-DNA 插入系的分析表明,一个丰富的解旋酶 MNEME(MEM)在 MMC 分化中起着重要作用,并将生殖系命运限制在每个胚珠原基中的一个细胞。在杂合 mem 突变体中,与野生型相比,更高频率地观察到额外的增大的 MMC 样细胞,这些细胞有时会启动雌性配子体发育。这与受小 RNA 和对表观遗传调控重要的 DNA 甲基化途径影响的突变体的表型非常相似。重要的是,mem 表型具有无孢子生殖的特征,因为在这些突变体中,雌性配子体从两个非姐妹细胞开始。此外,在 mem 配子体核中,高级染色质结构和 LIKE HETEROCHROMATIN PROTEIN1 的分布都受到影响,表明存在表观遗传扰动。总之,MMC 转录组为未来的功能表征奠定了基础,如通过鉴定 MEM 来阐明其功能,MEM 是一个涉及生殖系命运限制的新基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/698d/3176755/b6dc25652417/pbio.1001155.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验