Suppr超能文献

植物对水分胁迫的响应:活性氧的作用。

Plant responses to water stress: role of reactive oxygen species.

机构信息

Department of Botany, Visva-Bharati, Santiniketan, India.

出版信息

Plant Signal Behav. 2011 Nov;6(11):1741-5. doi: 10.4161/psb.6.11.17729. Epub 2011 Nov 1.

Abstract

Responses of plants to water stress may be assigned as either injurious change or tolerance index. One of the primary and cardinal changes in response to drought stress is the generation of reactive oxygen species (ROS), which is being considered as the cause of cellular damage. However, recently a signaling role of such ROS in triggering the ROS scavenging system that may confer protection or tolerance against stress is emerging. Such scavenging system consists of antioxidant enzymes like SOD, catalase and peroxidases, and antioxidant compounds like ascorbate, reduced glutathione; a balance between ROS generation and scavenging ultimately determines the oxidative load. As revealed in case of defence against pathogen, signaling via ROS is initiated by NADPH oxidase-catalyzed superoxide generation in the apoplastic space (cell wall) followed by conversion to hydrogen peroxide by the activity of cell wall-localized SOD. Wall peroxidase may also play role in ROS generation for signaling. Hydrogen peroxide may use Ca2+ and MAPK pathway as downstream signaling cascade. Plant hormones associated with stress responses like ABA and ethylene play their role possibly via a cross talk with ROS towards stress tolerance, thus projecting a dual role of ROS under drought stress.

摘要

植物对水分胁迫的反应可以分为损伤变化或耐受指数。对干旱胁迫的主要和首要反应之一是产生活性氧(ROS),ROS 被认为是细胞损伤的原因。然而,最近 ROS 在触发 ROS 清除系统中的信号作用正在显现,该系统可能赋予对胁迫的保护或耐受。这种清除系统包括抗氧化酶如 SOD、过氧化氢酶和过氧化物酶,以及抗氧化化合物如抗坏血酸、还原型谷胱甘肽;ROS 的产生和清除之间的平衡最终决定了氧化负荷。在防御病原体的情况下,ROS 通过 NADPH 氧化酶催化的胞外空间(细胞壁)中超氧阴离子的产生来启动信号,随后细胞壁定位的 SOD 活性将其转化为过氧化氢。壁过氧化物酶也可能在 ROS 的产生中发挥信号作用。过氧化氢可能使用 Ca2+和 MAPK 途径作为下游信号级联。与胁迫反应相关的植物激素,如 ABA 和乙烯,可能通过与 ROS 的交叉对话来发挥作用,从而在干旱胁迫下表现出 ROS 的双重作用。

相似文献

1
Plant responses to water stress: role of reactive oxygen species.
Plant Signal Behav. 2011 Nov;6(11):1741-5. doi: 10.4161/psb.6.11.17729. Epub 2011 Nov 1.
2
Separate and combined responses to water deficit and UV-B radiation.
Plant Sci. 2013 Dec;213:98-105. doi: 10.1016/j.plantsci.2013.09.003. Epub 2013 Sep 7.
3
Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C₄) and Cleome spinosa (C₃) under drought stress.
Plant Sci. 2012 Jan;182:59-70. doi: 10.1016/j.plantsci.2011.03.015. Epub 2011 Apr 6.
4
Reactive oxygen species signaling in melatonin-mediated plant stress response.
Plant Physiol Biochem. 2024 Feb;207:108398. doi: 10.1016/j.plaphy.2024.108398. Epub 2024 Jan 24.
5
A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice.
Plant Physiol. 2010 Feb;152(2):876-90. doi: 10.1104/pp.109.149856. Epub 2009 Dec 9.
7
Role of Reactive Oxygen Species and Hormones in Plant Responses to Temperature Changes.
Int J Mol Sci. 2021 Aug 17;22(16):8843. doi: 10.3390/ijms22168843.
8
Redox regulation of water stress responses in field-grown plants. Role of hydrogen peroxide and ascorbate.
Plant Physiol Biochem. 2010 May;48(5):351-8. doi: 10.1016/j.plaphy.2010.01.021. Epub 2010 Feb 4.

引用本文的文献

2
enhances salt stress tolerance in flax: genome-wide profiling and functional validation of the SOD gene family.
Front Plant Sci. 2025 Jul 3;16:1609085. doi: 10.3389/fpls.2025.1609085. eCollection 2025.
4
The phenomenon of anhydrobiosis-structural and functional changes in yeast cells.
Appl Microbiol Biotechnol. 2025 Jun 25;109(1):152. doi: 10.1007/s00253-025-13539-6.
5
The scion-driven transcriptomic changes guide the resilience of grafted near-isohydric grapevines under water deficit.
Hortic Res. 2024 Oct 23;12(2):uhae291. doi: 10.1093/hr/uhae291. eCollection 2025 Jan.
7
Impact of Drought Stress on Plant Growth and Its Management Using Plant Growth Promoting Rhizobacteria.
Indian J Microbiol. 2024 Jun;64(2):287-303. doi: 10.1007/s12088-024-01201-0. Epub 2024 Feb 17.
10
Responses to water stress extremes in diverse red clover germplasm accessions.
Front Plant Sci. 2023 Jun 22;14:1195058. doi: 10.3389/fpls.2023.1195058. eCollection 2023.

本文引用的文献

1
Redox regulation of water stress responses in field-grown plants. Role of hydrogen peroxide and ascorbate.
Plant Physiol Biochem. 2010 May;48(5):351-8. doi: 10.1016/j.plaphy.2010.01.021. Epub 2010 Feb 4.
2
Drought stress and reactive oxygen species: Production, scavenging and signaling.
Plant Signal Behav. 2008 Mar;3(3):156-65. doi: 10.4161/psb.3.3.5536.
3
Specific functions of individual class III peroxidase genes.
J Exp Bot. 2009;60(2):391-408. doi: 10.1093/jxb/ern318. Epub 2008 Dec 16.
4
Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network.
J Integr Plant Biol. 2008 Jan;50(1):2-18. doi: 10.1111/j.1744-7909.2007.00599.x.
5
Unraveling the tapestry of networks involving reactive oxygen species in plants.
Plant Physiol. 2008 Jul;147(3):978-84. doi: 10.1104/pp.108.122325.
6
Local positive feedback regulation determines cell shape in root hair cells.
Science. 2008 Feb 29;319(5867):1241-4. doi: 10.1126/science.1152505.
7
Oxidative modifications to cellular components in plants.
Annu Rev Plant Biol. 2007;58:459-81. doi: 10.1146/annurev.arplant.58.032806.103946.
8
Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels.
Plant J. 2007 Feb;49(3):377-86. doi: 10.1111/j.1365-313X.2006.02971.x. Epub 2006 Dec 20.
9
Mitogen-activated protein kinases and reactive oxygen species signaling in plants.
Plant Physiol. 2006 Jun;141(2):351-6. doi: 10.1104/pp.106.079160.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验