Suppr超能文献

结核分枝杆菌甲硫氨酸氨肽酶抑制的结构分析:苯并酰胺衍生物的作用。

Structural analysis of inhibition of Mycobacterium tuberculosis methionine aminopeptidase by bengamide derivatives.

机构信息

Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, United States.

出版信息

Eur J Med Chem. 2012 Jan;47(1):479-84. doi: 10.1016/j.ejmech.2011.11.017. Epub 2011 Nov 17.

Abstract

Natural product-derived bengamides possess potent antiproliferative activity and target human methionine aminopeptidases for their cellular effects. Using bengamides as a template, several derivatives were designed and synthesized as inhibitors of methionine aminopeptidases of Mycobacterium tuberculosis, and initial antitubercular activity were observed. Here, we present three new X-ray structures of the tubercular enzyme MtMetAP1c in complex with the inhibitors in the Mn(II) form and in the Ni(II) form. All amide moieties of the bengamide derivatives bind to the unique shallow cavity and interact with a flat surface created by His-212 of MtMetAP1c in the Mn(II) form. However, the active site metal has significant influence on the binding mode, because the amide takes a different conformation in the Ni(II) form. The interactions of these inhibitors at the active site provide the structural basis for further modification of these bengamide inhibitors for improved potency and selectivity.

摘要

天然产物衍生的苯甲酰胺具有很强的抗增殖活性,其细胞作用的靶点是人类蛋氨酸氨肽酶。本研究以苯甲酰胺为模板,设计并合成了几种作为结核分枝杆菌蛋氨酸氨肽酶抑制剂的衍生物,并观察到了初步的抗结核活性。在这里,我们呈现了三种新的结核分枝杆菌酶 MtMetAP1c 与 Mn(II)形式和 Ni(II)形式的抑制剂复合物的 X 射线结构。所有苯甲酰胺衍生物的酰胺部分都与独特的浅腔结合,并与 MtMetAP1c 的 His-212 形成的平面表面相互作用,在 Mn(II)形式下。然而,活性部位的金属对结合模式有显著影响,因为酰胺在 Ni(II)形式下呈现出不同的构象。这些抑制剂在活性部位的相互作用为进一步修饰这些苯甲酰胺抑制剂以提高其效力和选择性提供了结构基础。

相似文献

1
Structural analysis of inhibition of Mycobacterium tuberculosis methionine aminopeptidase by bengamide derivatives.
Eur J Med Chem. 2012 Jan;47(1):479-84. doi: 10.1016/j.ejmech.2011.11.017. Epub 2011 Nov 17.
2
Inhibition of Mycobacterium tuberculosis methionine aminopeptidases by bengamide derivatives.
ChemMedChem. 2011 Jun 6;6(6):1041-8. doi: 10.1002/cmdc.201100003. Epub 2011 Apr 4.
3
Structural analysis of bengamide derivatives as inhibitors of methionine aminopeptidases.
J Med Chem. 2012 Sep 27;55(18):8021-7. doi: 10.1021/jm3008695. Epub 2012 Sep 14.
4
Catalysis and inhibition of Mycobacterium tuberculosis methionine aminopeptidase.
J Med Chem. 2010 Feb 11;53(3):1329-37. doi: 10.1021/jm901624n.
5
Expression and characterization of Mycobacterium tuberculosis methionine aminopeptidase type 1a.
Bioorg Med Chem Lett. 2010 May 1;20(9):2776-9. doi: 10.1016/j.bmcl.2010.03.067. Epub 2010 Mar 19.
7
Methionine aminopeptidases from Mycobacterium tuberculosis as novel antimycobacterial targets.
Chem Biol. 2010 Jan 29;17(1):86-97. doi: 10.1016/j.chembiol.2009.12.014.
8
Analogs of N'-hydroxy-N-(4H,5H-naphtho[1,2-d]thiazol-2-yl)methanimidamide inhibit Mycobacterium tuberculosis methionine aminopeptidases.
Bioorg Med Chem. 2012 Jul 15;20(14):4507-13. doi: 10.1016/j.bmc.2012.05.022. Epub 2012 May 17.
9
Proteomics-based target identification: bengamides as a new class of methionine aminopeptidase inhibitors.
J Biol Chem. 2003 Dec 26;278(52):52964-71. doi: 10.1074/jbc.M309039200. Epub 2003 Oct 8.

引用本文的文献

2
Methionine aminopeptidases: Potential therapeutic target for microsporidia and other microbes.
J Eukaryot Microbiol. 2024 Sep-Oct;71(5):e13036. doi: 10.1111/jeu.13036. Epub 2024 Jul 22.
3
The Development of the Bengamides as New Antibiotics against Drug-Resistant Bacteria.
Mar Drugs. 2022 May 31;20(6):373. doi: 10.3390/md20060373.
4
Identification of Antimycobacterial Natural Products from a Library of Marine Invertebrate Extracts.
Medicines (Basel). 2022 Jan 28;9(2):9. doi: 10.3390/medicines9020009.
5
Decoding the Function of Expansion Segments in Ribosomes.
Mol Cell. 2018 Dec 20;72(6):1013-1020.e6. doi: 10.1016/j.molcel.2018.11.023.
6
The Bengamides: A Mini-Review of Natural Sources, Analogues, Biological Properties, Biosynthetic Origins, and Future Prospects.
J Nat Prod. 2017 Mar 24;80(3):740-755. doi: 10.1021/acs.jnatprod.6b00970. Epub 2017 Feb 10.
7
Marine Natural Products from New Caledonia--A Review.
Mar Drugs. 2016 Mar 16;14(3):58. doi: 10.3390/md14030058.
8
Advances in Bacterial Methionine Aminopeptidase Inhibition.
Curr Top Med Chem. 2016;16(4):397-414. doi: 10.2174/1568026615666150813145410.
9
Crystal structure of XoLAP, a leucine aminopeptidase, from Xanthomonas oryzae pv. oryzae.
J Microbiol. 2013 Oct;51(5):627-32. doi: 10.1007/s12275-013-3234-2. Epub 2013 Oct 31.
10
Structural analysis of bengamide derivatives as inhibitors of methionine aminopeptidases.
J Med Chem. 2012 Sep 27;55(18):8021-7. doi: 10.1021/jm3008695. Epub 2012 Sep 14.

本文引用的文献

1
Design, synthesis, and biological evaluation of ring-opened bengamide analogues.
ChemMedChem. 2011 Sep 5;6(9):1555-8. doi: 10.1002/cmdc.201100164. Epub 2011 Jun 15.
2
Inhibition of Mycobacterium tuberculosis methionine aminopeptidases by bengamide derivatives.
ChemMedChem. 2011 Jun 6;6(6):1041-8. doi: 10.1002/cmdc.201100003. Epub 2011 Apr 4.
4
Expression and characterization of Mycobacterium tuberculosis methionine aminopeptidase type 1a.
Bioorg Med Chem Lett. 2010 May 1;20(9):2776-9. doi: 10.1016/j.bmcl.2010.03.067. Epub 2010 Mar 19.
5
Catalysis and inhibition of Mycobacterium tuberculosis methionine aminopeptidase.
J Med Chem. 2010 Feb 11;53(3):1329-37. doi: 10.1021/jm901624n.
6
Expression and characterization of two functional methionine aminopeptidases from Mycobacterium tuberculosis H37Rv.
Curr Microbiol. 2009 Nov;59(5):520-5. doi: 10.1007/s00284-009-9470-3. Epub 2009 Aug 18.
7
FE(II) is the native cofactor for Escherichia coli methionine aminopeptidase.
J Biol Chem. 2008 Oct 3;283(40):26879-85. doi: 10.1074/jbc.M804345200. Epub 2008 Jul 31.
9
Design, synthesis, and biological evaluation of caprolactam-modified bengamide analogues.
ChemMedChem. 2008 Jan;3(1):74-8. doi: 10.1002/cmdc.200700214.
10
Comparative genomics of mycobacterial proteases.
Microb Pathog. 2007 Nov-Dec;43(5-6):173-8. doi: 10.1016/j.micpath.2007.05.010. Epub 2007 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验