Suppr超能文献

盐酸度洛西汀盐酸盐脂质纳米粒:制备、表征和剂型设计。

Duloxetine HCl lipid nanoparticles: preparation, characterization, and dosage form design.

机构信息

Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz, Mumbai, India.

出版信息

AAPS PharmSciTech. 2012 Mar;13(1):125-33. doi: 10.1208/s12249-011-9727-6. Epub 2011 Dec 14.

Abstract

Solid lipid nanoparticles (SLNs) of duloxetine hydrochloride (DLX) were prepared to circumvent the problems of DLX, which include acid labile nature, high first-pass metabolism, and high-dosing frequency. The DLX-SLNs were prepared by using two different techniques, viz. solvent diffusion method and ultrasound dispersion method, and evaluated for particle size, zeta potential, entrapment efficiency, physical characteristics, and chemical stability. Best results were obtained when SLNs were prepared by ultrasound dispersion method using glyceryl mono stearate as solid lipid and DLX in ratio of 1:20 and mixture of polysorbate 80 and poloxamer 188 as surfactant in concentration of 3%. The mean particle size of formulation and entrapment efficiency was 91.7 nm and 87%, respectively, and had excellent stability in acidic medium. Differential scanning calorimetry and X-ray diffraction data showed complete amorphization of DLX in lipid. In vitro drug release from SLNs was observed for 48 h and was in accordance with Higuchi kinetics. In vivo antidepressant activity was evaluated in mice by forced swim test. DLX-SLNs showed significant enhancement in antidepressant activity at 24 h when administered orally in comparison to drug solution. These results confirm the potential of SLNs in enhancing chemical stability and improving the efficacy of DLX via oral route. The SLN dispersion was converted into solid granules by adsorbing on colloidal silicon dioxide and characterized for particle size after redispersion, morphology, and flow properties. Results indicated that nanoparticles were successfully adsorbed on the carrier and released SLNs when dispersed in water.

摘要

盐酸度洛西汀(DLX)固体脂质纳米粒(SLNs)的制备旨在解决 DLX 的问题,包括酸不稳定、首过代谢高和高剂量频率。通过使用两种不同的技术,即溶剂扩散法和超声分散法,制备了 DLX-SLNs,并对其粒径、Zeta 电位、包封效率、物理特性和化学稳定性进行了评价。当使用单硬脂酸甘油酯作为固体脂质,DLX 与固体脂质的比例为 1:20,聚山梨酯 80 和泊洛沙姆 188 的混合物作为表面活性剂,浓度为 3%时,通过超声分散法制备 SLNs 可获得最佳结果。制剂的平均粒径和包封效率分别为 91.7nm 和 87%,在酸性介质中具有优异的稳定性。差示扫描量热法和 X 射线衍射数据表明 DLX 在脂质中完全非晶化。体外释放研究表明,SLNs 在 48 小时内释放药物,符合 Higuchi 动力学。通过强迫游泳试验在小鼠体内评估抗抑郁活性。与药物溶液相比,口服给予 SLNs 可显著增强 24 小时时的抗抑郁活性。这些结果证实了 SLNs 通过口服途径增强 DLX 的化学稳定性和提高疗效的潜力。将 SLN 分散体吸附在胶体二氧化硅上,转化为固体颗粒,并对重新分散后的粒径、形态和流动性能进行了表征。结果表明,纳米颗粒成功地吸附在载体上,并在分散在水中时释放出 SLNs。

相似文献

1
Duloxetine HCl lipid nanoparticles: preparation, characterization, and dosage form design.
AAPS PharmSciTech. 2012 Mar;13(1):125-33. doi: 10.1208/s12249-011-9727-6. Epub 2011 Dec 14.
2
Solid lipid nanoparticles-mediated enhanced antidepressant activity of duloxetine in lipopolysaccharide-induced depressive model.
Colloids Surf B Biointerfaces. 2020 Oct;194:111209. doi: 10.1016/j.colsurfb.2020.111209. Epub 2020 Jun 21.
5
Pharmacokinetic and pharmacodynamic studies of nisoldipine-loaded solid lipid nanoparticles developed by central composite design.
Drug Dev Ind Pharm. 2015;41(12):1968-77. doi: 10.3109/03639045.2015.1024685. Epub 2015 Apr 1.
6
Topical Amphotericin B solid lipid nanoparticles: Design and development.
Colloids Surf B Biointerfaces. 2016 Mar 1;139:17-24. doi: 10.1016/j.colsurfb.2015.07.032. Epub 2015 Dec 3.
8
Development of Domperidone Solid Lipid Nanoparticles: In Vitro and In Vivo Characterization.
AAPS PharmSciTech. 2018 May;19(4):1712-1719. doi: 10.1208/s12249-018-0987-2. Epub 2018 Mar 12.
10
Acyclovir Solid Lipid Nanoparticles for Skin Drug Delivery: Fabrication, Characterization and In vitro Study.
Recent Pat Drug Deliv Formul. 2017;11(2):132-146. doi: 10.2174/1872211311666170117123403.

引用本文的文献

2
Nanostructured Lipid Carrier-loaded Gel for Ophthalmic Drug Delivery: Preparation and Characterization Studies.
Pharm Nanotechnol. 2025;13(1):171-183. doi: 10.2174/0122117385266639231029192409.
3
Glycerosomal thermosensitive in situ gel of duloxetine HCl as a novel nanoplatform for rectal delivery: in vitro optimization and in vivo appraisal.
Drug Deliv Transl Res. 2022 Dec;12(12):3083-3103. doi: 10.1007/s13346-022-01172-z. Epub 2022 May 27.
4
Susceptibility of Lung Carcinoma Cells to Nanostructured Lipid Carrier of ARV-825, a BRD4 Degrading Proteolysis Targeting Chimera.
Pharm Res. 2022 Nov;39(11):2745-2759. doi: 10.1007/s11095-022-03184-3. Epub 2022 Feb 10.
5
Brain targeted delivery of rapamycin using transferrin decorated nanostructured lipid carriers.
Bioimpacts. 2022;12(1):21-32. doi: 10.34172/bi.2021.23389. Epub 2021 Oct 9.
6
Targeting Neuroimmune Interactions in Diabetic Neuropathy with Nanomedicine.
Antioxid Redox Signal. 2022 Jan;36(1-3):122-143. doi: 10.1089/ars.2021.0123.
7
Preformulation and characterization of raloxifene-loaded lipid nanoparticles for transdermal administration.
Drug Deliv Transl Res. 2022 Mar;12(3):526-537. doi: 10.1007/s13346-021-00949-y. Epub 2021 Mar 7.

本文引用的文献

1
Utilization of adsorption technique in the development of oral delivery system of lipid based nanoparticles.
Colloids Surf B Biointerfaces. 2010 Dec 1;81(2):563-9. doi: 10.1016/j.colsurfb.2010.07.058. Epub 2010 Aug 3.
3
Self-nanoemulsifying granules of ezetimibe: design, optimization and evaluation.
Eur J Pharm Sci. 2008 Oct 2;35(3):183-92. doi: 10.1016/j.ejps.2008.06.013. Epub 2008 Jul 5.
4
Dry adsorbed emulsion of simvastatin: optimization and in vivo advantage.
Pharm Dev Technol. 2007;12(5):495-504. doi: 10.1080/10837450701557246.
5
Antidepressant behavioral effects of duloxetine and fluoxetine in the rat forced swimming test.
Acta Cir Bras. 2007 Sep-Oct;22(5):351-4. doi: 10.1590/s0102-86502007000500005.
6
Oral lipid-based formulations.
Adv Drug Deliv Rev. 2007 Jul 30;59(7):667-76. doi: 10.1016/j.addr.2007.05.006. Epub 2007 May 26.
8
Development and evaluation of nitrendipine loaded solid lipid nanoparticles: influence of wax and glyceride lipids on plasma pharmacokinetics.
Int J Pharm. 2007 Apr 20;335(1-2):167-175. doi: 10.1016/j.ijpharm.2006.11.004. Epub 2006 Nov 3.
9
Solid lipid nanoparticles for enhancing vinpocetine's oral bioavailability.
J Control Release. 2006 Aug 10;114(1):53-9. doi: 10.1016/j.jconrel.2006.05.010. Epub 2006 May 23.
10
Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN) versus drug nanocrystals.
Int J Pharm. 2006 Jul 6;317(1):82-9. doi: 10.1016/j.ijpharm.2006.02.045. Epub 2006 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验