Suppr超能文献

评估诱导多能干细胞片在组织工程血管移植物构建中的应用。

Evaluation of the use of an induced puripotent stem cell sheet for the construction of tissue-engineered vascular grafts.

机构信息

Section of Cardiac Surgery, Yale University School of Medicine, New Haven, CT 06510, USA.

出版信息

J Thorac Cardiovasc Surg. 2012 Mar;143(3):696-703. doi: 10.1016/j.jtcvs.2011.06.046. Epub 2012 Jan 12.

Abstract

OBJECTIVE

The development of a living, tissue-engineered vascular graft (TEVG) holds great promise for advancing the field of cardiovascular surgery. However, the ultimate source and time needed to procure these cells remain problematic. Induced puripotent stem (iPS) cells have recently been developed and have the potential for creating a pluripotent cell line from a patient's own somatic cells. In the present study, we evaluated the use of a sheet created from iPS cell-derived vascular cells as a potential source for the construction of TEVG.

METHODS

Male mouse iPS cells were differentiated into embryoid bodies using the hanging-drop method. Cell differentiation was confirmed by a decrease in the proportion of SSEA-1-positive cells over time using fluorescence-activated cell sorting. The expression of endothelial cell and smooth muscle cell markers was detected using real-time polymerase chain reaction (PCR). The differentiated iPS cell sheet was made using temperature-responsive dishes and then seeded onto a biodegradable scaffold composed of polyglycolic acid-poly-l-lactide and poly(l-lactide-co-ε-caprolactone) with a diameter of 0.8 mm. These scaffolds were implanted as interposition grafts in the inferior vena cava of female severe combined immunodeficiency/beige mice (n = 15). Graft function was serially monitored using ultrasonography. The grafts were analyzed at 1, 4, and 10 weeks with histologic examination and immunohistochemistry. The behavior of seeded differentiated iPS cells was tracked using Y-chromosome fluorescent in situ hybridization and SRY real-time PCR.

RESULTS

All mice survived without thrombosis, aneurysm formation, graft rupture, or calcification. PCR evaluation of iPS cell sheets in vitro demonstrated increased expression of endothelial cell markers. Histologic evaluation of the grafts demonstrated endothelialization with von Willebrand factor and an inner layer with smooth muscle actin- and calponin-positive cells at 10 weeks. The number of seeded differentiated iPS cells was found to decrease over time using real-time PCR (42.2% at 1 week, 10.4% at 4 weeks, 9.8% at 10 weeks). A fraction of the iPS cells were found to be Y-chromosome fluorescent positive at 1 week. No iPS cells were found to co-localize with von Willebrand factor or smooth muscle actin-positive cells at 10 weeks.

CONCLUSIONS

Differentiated iPS cells offer an alternative cell source for constructing TEVG. Seeded iPS cells exerted a paracrine effect to induce neotissue formation in the acute phase and were reduced in number by apoptosis at later time points. Sheet seeding of our TEVG represents a viable mode of iPS cell delivery over time.

摘要

目的

开发一种具有生命力的组织工程血管移植物(TEVG),这对于推进心血管外科学领域具有重要意义。然而,获取这些细胞的最终来源和所需时间仍然存在问题。诱导多能干细胞(iPS)细胞最近已经被开发出来,并且有可能从患者自身的体细胞中创建多能细胞系。在本研究中,我们评估了由 iPS 细胞衍生的血管细胞制成的薄片作为构建 TEVG 的潜在来源。

方法

使用悬滴法将雄性小鼠 iPS 细胞分化为类胚体。通过荧光激活细胞分选术,随着时间的推移,细胞分化被 SSEA-1 阳性细胞比例的降低所证实。使用实时聚合酶链反应(PCR)检测内皮细胞和平滑肌细胞标志物的表达。使用温度响应培养皿制作分化的 iPS 细胞片,然后将其播种到由聚乙二醇酸-聚 L-乳酸和聚 L-乳酸-co-ε-己内酯组成的可生物降解支架上,直径为 0.8 毫米。这些支架作为间置移植物植入雌性严重联合免疫缺陷/ beige 小鼠的下腔静脉(n=15)。使用超声检查连续监测移植物功能。在 1、4 和 10 周时进行组织学检查和免疫组织化学分析。使用 Y 染色体荧光原位杂交和实时 PCR 跟踪播种的分化 iPS 细胞的行为。

结果

所有小鼠均存活,无血栓形成、动脉瘤形成、移植物破裂或钙化。体外 iPS 细胞片的 PCR 评估显示内皮细胞标志物表达增加。移植物的组织学评估显示,10 周时内皮化,von Willebrand 因子阳性,内层平滑肌肌动蛋白和钙调蛋白阳性细胞阳性。使用实时 PCR 发现播种的分化 iPS 细胞数量随时间减少(1 周时为 42.2%,4 周时为 10.4%,10 周时为 9.8%)。1 周时发现一部分 iPS 细胞呈 Y 染色体荧光阳性。10 周时未发现 iPS 细胞与 von Willebrand 因子或平滑肌肌动蛋白阳性细胞共定位。

结论

分化的 iPS 细胞为构建 TEVG 提供了另一种细胞来源。播种的 iPS 细胞发挥旁分泌作用,在急性期诱导新组织形成,随后在后期通过细胞凋亡减少数量。我们的 TEVG 的薄片播种代表了随着时间的推移 iPS 细胞传递的可行方式。

相似文献

1
Evaluation of the use of an induced puripotent stem cell sheet for the construction of tissue-engineered vascular grafts.
J Thorac Cardiovasc Surg. 2012 Mar;143(3):696-703. doi: 10.1016/j.jtcvs.2011.06.046. Epub 2012 Jan 12.
2
Evaluation of remodeling process in small-diameter cell-free tissue-engineered arterial graft.
J Vasc Surg. 2015 Sep;62(3):734-43. doi: 10.1016/j.jvs.2014.03.011. Epub 2014 Apr 16.
3
Tissue-engineered Vascular Grafts in Children With Congenital Heart Disease: Intermediate Term Follow-up.
Semin Thorac Cardiovasc Surg. 2018 Summer;30(2):175-179. doi: 10.1053/j.semtcvs.2018.02.002. Epub 2018 Feb 7.
4
Role of Bone Marrow Mononuclear Cell Seeding for Nanofiber Vascular Grafts.
Tissue Eng Part A. 2018 Jan;24(1-2):135-144. doi: 10.1089/ten.TEA.2017.0044. Epub 2017 Jun 13.
5
Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model.
J Thorac Cardiovasc Surg. 2017 Apr;153(4):924-932. doi: 10.1016/j.jtcvs.2016.10.066. Epub 2016 Nov 14.
9
A new tissue-engineered biodegradable surgical patch for high-pressure systems †.
Interact Cardiovasc Thorac Surg. 2015 Jun;20(6):768-76. doi: 10.1093/icvts/ivv017. Epub 2015 Feb 26.
10
In situ tissue regeneration using a novel tissue-engineered, small-caliber vascular graft without cell seeding.
J Thorac Cardiovasc Surg. 2008 Oct;136(4):900-7. doi: 10.1016/j.jtcvs.2008.02.058. Epub 2008 Jul 3.

引用本文的文献

1
Serum-free endothelial cell culture medium for vascular smooth muscle cells sheet formation.
J Biol Eng. 2025 May 28;19(1):51. doi: 10.1186/s13036-025-00522-y.
2
Patient-specific tissue engineered vascular graft for aortic arch reconstruction.
JTCVS Open. 2024 Feb 27;18:209-220. doi: 10.1016/j.xjon.2024.02.012. eCollection 2024 Apr.
3
Mesenchymal stem cells in craniofacial reconstruction: a comprehensive review.
Front Mol Biosci. 2024 Apr 16;11:1362338. doi: 10.3389/fmolb.2024.1362338. eCollection 2024.
4
Hemodynamics and Wall Mechanics of Vascular Graft Failure.
Arterioscler Thromb Vasc Biol. 2024 May;44(5):1065-1085. doi: 10.1161/ATVBAHA.123.318239. Epub 2024 Apr 4.
5
Flow-induced glycocalyx formation and cell alignment of HUVECs compared to iPSC-derived ECs for tissue engineering applications.
Front Cell Dev Biol. 2022 Sep 5;10:953062. doi: 10.3389/fcell.2022.953062. eCollection 2022.
6
Biomaterials as a Vital Frontier for Stem Cell-Based Tissue Regeneration.
Front Cell Dev Biol. 2022 Mar 24;10:713934. doi: 10.3389/fcell.2022.713934. eCollection 2022.
7
Vascular Grafts with Tailored Stiffness and a Ligand Environment via Multiarmed Polymer Sheath for Expeditious Regeneration.
ACS Appl Bio Mater. 2021 Jan 18;4(1):545-558. doi: 10.1021/acsabm.0c01114. Epub 2020 Dec 24.
8
Cellularized small-caliber tissue-engineered vascular grafts: looking for the ultimate gold standard.
NPJ Regen Med. 2021 Aug 12;6(1):46. doi: 10.1038/s41536-021-00155-x.
9
Biodistribution studies for cell therapy products: Current status and issues.
Regen Ther. 2021 Jul 12;18:202-216. doi: 10.1016/j.reth.2021.06.005. eCollection 2021 Dec.

本文引用的文献

1
Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling.
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4669-74. doi: 10.1073/pnas.0911465107. Epub 2010 Mar 5.
2
Embryonic stem cell-derived endothelial cells engraft into the ischemic hindlimb and restore perfusion.
Arterioscler Thromb Vasc Biol. 2010 May;30(5):984-91. doi: 10.1161/ATVBAHA.110.202796. Epub 2010 Feb 18.
3
Late-term results of tissue-engineered vascular grafts in humans.
J Thorac Cardiovasc Surg. 2010 Feb;139(2):431-6, 436.e1-2. doi: 10.1016/j.jtcvs.2009.09.057.
4
Cell-seeding techniques in vascular tissue engineering.
Tissue Eng Part B Rev. 2010 Jun;16(3):341-50. doi: 10.1089/ten.TEB.2009.0527.
6
Endothelial progenitor cells and their potential therapeutic applications.
Regen Med. 2008 Nov;3(6):863-76. doi: 10.2217/17460751.3.6.863.
8
Generation of functional murine cardiac myocytes from induced pluripotent stem cells.
Circulation. 2008 Jul 29;118(5):507-17. doi: 10.1161/CIRCULATIONAHA.108.778795. Epub 2008 Jul 14.
9
Gene and stem cell therapy in peripheral arterial occlusive disease.
Vasc Med. 2008;13(2):157-72. doi: 10.1177/1358863x08088616.
10
Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages.
Stem Cells. 2008 Jun;26(6):1537-46. doi: 10.1634/stemcells.2008-0033. Epub 2008 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验