Grasberger Helmut, De Deken Xavier, Mayo Olga Barca, Raad Houssam, Weiss Mia, Liao Xiao-Hui, Refetoff Samuel
Biomedical Science Research Building, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
Mol Endocrinol. 2012 Mar;26(3):481-92. doi: 10.1210/me.2011-1320. Epub 2012 Feb 2.
Dual oxidases (DUOX1 and DUOX2) are evolutionary conserved reduced nicotinamide adenine dinucleotide phosphate oxidases responsible for regulated hydrogen peroxide (H(2)O(2)) release of epithelial cells. Specific maturation factors (DUOXA1 and DUOXA2) are required for targeting of functional DUOX enzymes to the cell surface. Mutations in the single-copy Duox and Duoxa genes of invertebrates cause developmental defects with reduced survival, whereas knockdown in later life impairs intestinal epithelial immune homeostasis. In humans, mutations in both DUOX2 and DUOXA2 can cause congenital hypothyroidism with partial iodide organification defects compatible with a role of DUOX2-generated H(2)O(2) in driving thyroid peroxidase activity. The DUOX1/DUOXA1 system may account for residual iodide organification in patients with loss of DUOX2, but its physiological function is less clear. To provide a murine model recapitulating complete DUOX deficiency, we simultaneously targeted both Duoxa genes by homologous recombination. Knockout of Duoxa genes (Duoxa(-/-) mice) led to a maturation defect of DUOX proteins lacking Golgi processing of N-glycans and to loss of H(2)O(2) release from thyroid tissue. Postnatally, Duoxa(-/-) mice developed severe goitreous congenital hypothyroidism with undetectable serum T4 and maximally disinhibited TSH levels. Heterozygous mice had normal thyroid function parameters. (125)I uptake and discharge studies and probing of iodinated TG epitopes corroborated the iodide organification defect in Duoxa(-/-) mice. Duoxa(-/-) mice on continuous T4 replacement from P6 showed normal growth without an overt phenotype. Our results confirm in vivo the requirement of DUOXA for functional expression of DUOX-based reduced nicotinamide adenine dinucleotide phosphate oxidases and the role of DUOX isoenzymes as sole source of hormonogenic H(2)O(2).
双氧化酶(DUOX1和DUOX2)是进化保守的还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶,负责调节上皮细胞过氧化氢(H₂O₂)的释放。功能性DUOX酶靶向细胞表面需要特定的成熟因子(DUOXA1和DUOXA2)。无脊椎动物单拷贝Duox和Duoxa基因的突变会导致发育缺陷并降低存活率,而在成年后敲低这些基因会损害肠道上皮免疫稳态。在人类中,DUOX2和DUOXA2的突变均可导致先天性甲状腺功能减退,并伴有部分碘有机化缺陷,这与DUOX2产生的H₂O₂在驱动甲状腺过氧化物酶活性中的作用相符。DUOX1/DUOXA1系统可能解释了DUOX2缺失患者的残余碘有机化现象,但其生理功能尚不清楚。为了提供一个概括完全DUOX缺陷的小鼠模型,我们通过同源重组同时靶向两个Duoxa基因。敲除Duoxa基因(Duoxa⁻/⁻小鼠)导致DUOX蛋白成熟缺陷,缺乏高尔基体对N-聚糖的加工,并导致甲状腺组织H₂O₂释放丧失。出生后,Duoxa⁻/⁻小鼠出现严重的甲状腺肿先天性甲状腺功能减退,血清T4检测不到,促甲状腺激素(TSH)水平极度不受抑制。杂合小鼠的甲状腺功能参数正常。¹²⁵I摄取和释放研究以及碘化甲状腺球蛋白(TG)表位检测证实了Duoxa⁻/⁻小鼠存在碘有机化缺陷。从出生后第6天开始持续补充T4的Duoxa⁻/⁻小鼠生长正常,无明显表型。我们的结果在体内证实了DUOXA对于基于DUOX的还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶功能表达的必要性,以及DUOX同工酶作为激素生成性H₂O₂唯一来源的作用。