Kramer-Marek Gabriela, Capala Jacek
Division of Endocrinology, School of Medicine, Indiana University, Indianapolis, IN, USA.
Tumour Biol. 2012 Jun;33(3):629-40. doi: 10.1007/s13277-012-0373-8. Epub 2012 Mar 24.
Nuclear medicine is a multidisciplinary field that develops and uses instrumentation and tracers (radiopharmaceuticals) to study physiological processes and noninvasively diagnose, stage, and treat diseases. Particularly, it offers a unique means to study cancer biology in vivo and to optimize cancer therapy for individual patients. A tracer is either a radionuclide alone, such as iodine-131 or a radiolabel in a carrier molecule such as (18)F in fluorodeoxyglucose ((18)F-FDG), or other feasible radionuclide attached to a drug, a protein, or a peptide, which when introduced into the body, would accumulate in the tissue of interest. Nuclear medicine imaging, including single-photon emission computer tomography and positron emission tomography, can provide important quantitative and functional information about normal tissues or disease conditions, in contrast to conventional, anatomical imaging techniques such as ultrasound, computed tomography, or magnetic resonance imaging. For treatment, tumor-targeting agents, conjugated with therapeutic radionuclides, may be used to deposit lethal radiation at tumor sites. This review outlines the role of nuclear medicine in modern cancer therapy.
核医学是一个多学科领域,它研发并使用仪器和示踪剂(放射性药物)来研究生理过程,以及对疾病进行非侵入性诊断、分期和治疗。特别是,它为体内研究癌症生物学和为个体患者优化癌症治疗提供了独特的手段。示踪剂可以是单独的放射性核素,如碘-131,也可以是载体分子中的放射性标记物,如氟代脱氧葡萄糖中的(18)F((18)F-FDG),或者是附着在药物、蛋白质或肽上的其他可行放射性核素,当引入体内时,会在感兴趣的组织中积聚。与传统的解剖成像技术如超声、计算机断层扫描或磁共振成像不同,核医学成像,包括单光子发射计算机断层扫描和正电子发射断层扫描,可以提供有关正常组织或疾病状况的重要定量和功能信息。在治疗方面,与治疗性放射性核素结合的肿瘤靶向剂可用于在肿瘤部位沉积致死性辐射。本综述概述了核医学在现代癌症治疗中的作用。