Centre National de la Recherche Scientifique, UMR3348 "Genotoxic Stress and Cancer", 91405 Orsay, France.
Free Radic Biol Med. 2012;52(11-12):2254-65. doi: 10.1016/j.freeradbiomed.2012.04.004. Epub 2012 Apr 17.
Intracellular redox homeostasis is crucial for many cellular functions but accurate measurements of cellular compartment-specific redox states remain technically challenging. To better characterize redox control in the nucleus, we targeted a yellow fluorescent protein-based redox sensor (rxYFP) to the nucleus of the yeast Saccharomyces cerevisiae. Parallel analyses of the redox state of nucleus-rxYFP and cytosol-rxYFP allowed us to monitor distinctively dynamic glutathione (GSH) redox changes within these two compartments under a given condition. We observed that the nuclear GSH redox environment is highly reducing and similar to the cytosol under steady-state conditions. Furthermore, these sensors are able to detect redox variations specific for their respective compartments in glutathione reductase (Glr1) and thioredoxin pathway (Trr1, Trx1, Trx2) mutants that have altered subcellular redox environments. Our mutant redox data provide in vivo evidence that glutathione and the thioredoxin redox systems have distinct but overlapping functions in controlling subcellular redox environments. We also monitored the dynamic response of nucleus-rxYFP and cytosol-rxYFP to GSH depletion and to exogenous low and high doses of H₂O₂ bursts. These observations indicate a rapid and almost simultaneous oxidation of both nucleus-rxYFP and cytosol-rxYFP, highlighting the robustness of the rxYFP sensors in measuring real-time compartmental redox changes. Taken together, our data suggest that the highly reduced yeast nuclear and cytosolic redox states are maintained independently to some extent and under distinct but subtle redox regulation. Nucleus- and cytosol-rxYFP register compartment-specific localized redox fluctuations that may involve exchange of reduced and/or oxidized glutathione between these two compartments. Finally, we confirmed that GSH depletion has profound effects on mitochondrial genome stability but little effect on nuclear genome stability, thereby emphasizing that the critical requirement for GSH during growth is linked to a mitochondria-dependent process.
细胞内的氧化还原稳态对许多细胞功能至关重要,但准确测量细胞区室特异性的氧化还原状态在技术上仍然具有挑战性。为了更好地描述细胞核中的氧化还原控制,我们将一种基于黄色荧光蛋白的氧化还原传感器(rxYFP)靶向酵母酿酒酵母的细胞核。对核-rxYFP 和胞质溶胶-rxYFP 的氧化还原状态进行平行分析,使我们能够在给定条件下监测这两个区室中独特的谷胱甘肽(GSH)氧化还原变化。我们观察到,在稳态条件下,核 GSH 氧化还原环境高度还原,与胞质溶胶相似。此外,这些传感器能够检测到谷胱甘肽还原酶(Glr1)和硫氧还蛋白途径(Trr1、Trx1、Trx2)突变体中特定于各自区室的氧化还原变化,这些突变体改变了亚细胞氧化还原环境。我们的突变体氧化还原数据提供了体内证据,表明谷胱甘肽和硫氧还蛋白氧化还原系统在控制亚细胞氧化还原环境方面具有不同但重叠的功能。我们还监测了核-rxYFP 和胞质溶胶-rxYFP 对 GSH 耗竭以及外源性低剂量和高剂量 H₂O₂ 爆发的动态响应。这些观察结果表明,核-rxYFP 和胞质溶胶-rxYFP 几乎同时迅速氧化,突出了 rxYFP 传感器在测量实时区室氧化还原变化方面的稳健性。总之,我们的数据表明,酵母细胞核和胞质溶胶的高度还原氧化还原状态在一定程度上是独立维持的,并受到不同但微妙的氧化还原调节。核-rxYFP 和胞质溶胶-rxYFP 记录区室特异性局部氧化还原波动,这可能涉及这两个区室之间还原和/或氧化谷胱甘肽的交换。最后,我们证实 GSH 耗竭对线粒体基因组稳定性有深远影响,但对核基因组稳定性影响很小,从而强调了 GSH 在生长过程中的关键需求与依赖线粒体的过程有关。