Suppr超能文献

限时喂养而不减少热量摄入可预防高脂肪饮食喂养的小鼠发生代谢疾病。

Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet.

机构信息

Salk Institute for Biological Studies, La Jolla, CA 92037, USA.

出版信息

Cell Metab. 2012 Jun 6;15(6):848-60. doi: 10.1016/j.cmet.2012.04.019. Epub 2012 May 17.

Abstract

While diet-induced obesity has been exclusively attributed to increased caloric intake from fat, animals fed a high-fat diet (HFD) ad libitum (ad lib) eat frequently throughout day and night, disrupting the normal feeding cycle. To test whether obesity and metabolic diseases result from HFD or disruption of metabolic cycles, we subjected mice to either ad lib or time-restricted feeding (tRF) of a HFD for 8 hr per day. Mice under tRF consume equivalent calories from HFD as those with ad lib access yet are protected against obesity, hyperinsulinemia, hepatic steatosis, and inflammation and have improved motor coordination. The tRF regimen improved CREB, mTOR, and AMPK pathway function and oscillations of the circadian clock and their target genes' expression. These changes in catabolic and anabolic pathways altered liver metabolome and improved nutrient utilization and energy expenditure. We demonstrate in mice that tRF regimen is a nonpharmacological strategy against obesity and associated diseases.

摘要

虽然饮食诱导的肥胖症仅归因于脂肪摄入热量的增加,但自由进食高脂肪饮食(HFD)的动物会日夜频繁进食,扰乱正常的进食周期。为了测试肥胖症和代谢疾病是由 HFD 还是代谢周期的破坏引起的,我们让老鼠每天接受自由进食或限时进食(tRF)HFD8 小时。接受 tRF 的老鼠从 HFD 中摄入的热量与自由进食的老鼠相同,但它们可以预防肥胖症、高胰岛素血症、肝脂肪变性和炎症,并改善运动协调能力。tRF 方案改善了 CREB、mTOR 和 AMPK 通路的功能以及昼夜节律钟及其靶基因表达的波动。这些分解代谢和合成代谢途径的变化改变了肝脏代谢组,提高了营养物质的利用和能量消耗。我们在老鼠身上证明,tRF 方案是对抗肥胖症和相关疾病的非药物策略。

相似文献

1
Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet.
Cell Metab. 2012 Jun 6;15(6):848-60. doi: 10.1016/j.cmet.2012.04.019. Epub 2012 May 17.
2
Time-restricted feeding reduces adiposity in mice fed a high-fat diet.
Nutr Res. 2016 Jun;36(6):603-11. doi: 10.1016/j.nutres.2016.02.005. Epub 2016 Feb 20.
3
Restricting feeding to the active phase in middle-aged mice attenuates adverse metabolic effects of a high-fat diet.
Physiol Behav. 2016 Dec 1;167:1-9. doi: 10.1016/j.physbeh.2016.08.027. Epub 2016 Aug 30.
7
Time-restricted feeding mice a high-fat diet induces a unique lipidomic profile.
J Nutr Biochem. 2021 Feb;88:108531. doi: 10.1016/j.jnutbio.2020.108531. Epub 2020 Oct 22.
8
Dietary medium-chain fatty acids reduce hepatic fat accumulation via activation of a CREBH-FGF21 axis.
Mol Metab. 2024 Sep;87:101991. doi: 10.1016/j.molmet.2024.101991. Epub 2024 Jul 15.
10
Time-restricted feeding combined with resistance exercise prevents obesity and improves lipid metabolism in the liver of mice fed a high-fat diet.
Am J Physiol Endocrinol Metab. 2023 Nov 1;325(5):E513-E528. doi: 10.1152/ajpendo.00129.2023. Epub 2023 Sep 27.

引用本文的文献

1
Time-restricted feeding leads to sex- and organ-specific responses in the murine digestive system.
PLoS One. 2025 Sep 10;20(9):e0332295. doi: 10.1371/journal.pone.0332295. eCollection 2025.
2
Calorie and time-restricted feeding improves liver and kidney histopathology in streptozotocin-induced type 1 diabetic rats.
Front Physiol. 2025 Aug 21;16:1629751. doi: 10.3389/fphys.2025.1629751. eCollection 2025.
3
Role of circadian CLOCK signaling in cellular senescence.
Biogerontology. 2025 Sep 3;26(5):177. doi: 10.1007/s10522-025-10319-7.
4
Biochemical mechanism of the mammalian circadian clock.
FEBS Lett. 2025 Aug 25. doi: 10.1002/1873-3468.70150.
5
Blood pressure is elevated in the absence of resistance artery dysfunction in a mouse model of diet-induced obesity.
Front Physiol. 2025 Aug 5;16:1602155. doi: 10.3389/fphys.2025.1602155. eCollection 2025.
6
A qualitative study on nutrition and well-being of healthcare shift workers.
Sci Rep. 2025 Aug 20;15(1):30512. doi: 10.1038/s41598-025-11534-5.
7
Timing matters: lipid intake and its influence on menopausal-related symptoms.
J Transl Med. 2025 Aug 18;23(1):934. doi: 10.1186/s12967-025-06705-x.
10
Metatranscriptomics Uncover Diurnal Functional Shifts in Bacterial Transgenes with Profound Metabolic Effects.
Cell Host Microbe. 2025 Jul 9;33(7):1057-1072. doi: 10.1016/j.chom.2025.05.024. Epub 2025 Jun 18.

本文引用的文献

1
Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β.
Nature. 2012 Mar 29;485(7396):123-7. doi: 10.1038/nature11048.
2
AMPK and mTOR in cellular energy homeostasis and drug targets.
Annu Rev Pharmacol Toxicol. 2012;52:381-400. doi: 10.1146/annurev-pharmtox-010611-134537. Epub 2011 Oct 17.
3
The future challenge of obesity.
Lancet. 2011 Aug 27;378(9793):743-4. doi: 10.1016/S0140-6736(11)61261-0.
4
The economic impact of obesity in the United States.
Diabetes Metab Syndr Obes. 2010 Aug 30;3:285-95. doi: 10.2147/DMSOTT.S7384.
5
Telmisartan improves insulin resistance and modulates adipose tissue macrophage polarization in high-fat-fed mice.
Endocrinology. 2011 May;152(5):1789-99. doi: 10.1210/en.2010-1312. Epub 2011 Mar 22.
6
A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism.
Science. 2011 Mar 11;331(6022):1315-9. doi: 10.1126/science.1198125.
7
Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver.
PLoS Biol. 2011 Feb;9(2):e1000595. doi: 10.1371/journal.pbio.1000595. Epub 2011 Feb 22.
8
CREB and the CRTC co-activators: sensors for hormonal and metabolic signals.
Nat Rev Mol Cell Biol. 2011 Mar;12(3):141-51. doi: 10.1038/nrm3072.
10
Circadian integration of metabolism and energetics.
Science. 2010 Dec 3;330(6009):1349-54. doi: 10.1126/science.1195027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验