Suppr超能文献

可视化感染传播模型的结果:反对“置信区间”的案例。

Visualizing results from infection transmission models: a case against "confidence intervals".

机构信息

Department of Epidemiology, UNC Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, NC, USA.

出版信息

Epidemiology. 2012 Sep;23(5):738-41. doi: 10.1097/EDE.0b013e318258369b.

Abstract

Stochastic transmission models are highly important in infectious disease epidemiology. The quantity of data produced by these models is challenging to display and communicate. A common approach is to display the model results in the familiar form of a mean or median and 95% interval, plotted over time. This approach has drawbacks, however, including the potential for ambiguity and misinterpretation of model results. Instead, we propose 2 alternative approaches for visualizing results from stochastic models. These proposed approaches convey the information provided by the median and 95% interval, as well as information about unexpected outcomes that may be of particular interest for stochastic epidemic models.

摘要

随机传播模型在传染病流行病学中具有重要意义。这些模型产生的数据量难以展示和交流。一种常见的方法是将模型结果以均值或中位数和 95%区间的形式呈现,并随时间绘制。然而,这种方法存在一些缺陷,包括模型结果可能存在歧义或误解的风险。因此,我们提出了两种替代方法来可视化随机模型的结果。这两种方法不仅提供了中位数和 95%区间的信息,还提供了可能对随机传染病模型特别有意义的意外结果的信息。

相似文献

1
Visualizing results from infection transmission models: a case against "confidence intervals".
Epidemiology. 2012 Sep;23(5):738-41. doi: 10.1097/EDE.0b013e318258369b.
2
Stochastic fluctuations of the transmission rate in the susceptible-infected-susceptible epidemic model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011919. doi: 10.1103/PhysRevE.86.011919. Epub 2012 Jul 23.
3
Generation interval contraction and epidemic data analysis.
Math Biosci. 2008 May;213(1):71-9. doi: 10.1016/j.mbs.2008.02.007. Epub 2008 Feb 29.
4
Stochastic analysis of epidemics on adaptive time varying networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062810. doi: 10.1103/PhysRevE.87.062810. Epub 2013 Jun 19.
6
Building epidemiological models from R0: an implicit treatment of transmission in networks.
Proc Biol Sci. 2007 Feb 22;274(1609):505-12. doi: 10.1098/rspb.2006.0057.
7
Introduction and snapshot review: relating infectious disease transmission models to data.
Stat Med. 2010 Sep 10;29(20):2069-77. doi: 10.1002/sim.3968.
8
Forecasting Epidemics Through Nonparametric Estimation of Time-Dependent Transmission Rates Using the SEIR Model.
Bull Math Biol. 2019 Nov;81(11):4343-4365. doi: 10.1007/s11538-017-0284-3. Epub 2017 May 2.
9
The effect of contact heterogeneity and multiple routes of transmission on final epidemic size.
Math Biosci. 2006 Sep;203(1):124-36. doi: 10.1016/j.mbs.2006.03.002. Epub 2006 Apr 19.
10
Random fluctuations around a stable limit cycle in a stochastic system with parametric forcing.
J Math Biol. 2019 Dec;79(6-7):2133-2155. doi: 10.1007/s00285-019-01423-7. Epub 2019 Sep 13.

引用本文的文献

1
Pools versus Queues: The Variable Dynamics of Stochastic "Steady States".
PLoS One. 2015 Jun 19;10(6):e0130574. doi: 10.1371/journal.pone.0130574. eCollection 2015.
2
Modeling the impact of interventions on an epidemic of ebola in sierra leone and liberia.
PLoS Curr. 2014 Oct 16;6:ecurrents.outbreaks.fd38dd85078565450b0be3fcd78f5ccf. doi: 10.1371/currents.outbreaks.fd38dd85078565450b0be3fcd78f5ccf.
3
Modeling the impact of interventions on an epidemic of ebola in sierra leone and liberia.
PLoS Curr. 2014 Nov 6;6:ecurrents.outbreaks.4d41fe5d6c05e9df30ddce33c66d084c. doi: 10.1371/currents.outbreaks.4d41fe5d6c05e9df30ddce33c66d084c.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验