Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, TX 78712, USA.
ACS Chem Biol. 2012 Aug 17;7(8):1462-70. doi: 10.1021/cb3000887. Epub 2012 Jun 18.
The C-terminal domain (CTD) of eukaryotic RNA polymerase II is an essential regulator for RNA polymerase II-mediated transcription. It is composed of multiple repeats of a consensus sequence Tyr(1)Ser(2)Pro(3)Thr(4)Ser(5)Pro(6)Ser(7). CTD regulation of transcription is mediated by both phosphorylation of the serines and prolyl isomerization of the two prolines. Interestingly, the phosphorylation sites are typically close to prolines, and thus the conformation of the adjacent proline could impact the specificity of the corresponding kinases and phosphatases. Experimental evidence of cross-talk between these two regulatory mechanisms has been elusive. Pin1 is a highly conserved phosphorylation-specific peptidyl-prolyl isomerase (PPIase) that recognizes the phospho-Ser/Thr (pSer/Thr)-Pro motif with CTD as one of its primary substrates in vivo. In the present study, we provide structural snapshots and kinetic evidence that support the concept of cross-talk between prolyl isomerization and phosphorylation. We determined the structures of Pin1 bound with two substrate isosteres that mimic peptides containing pSer/Thr-Pro motifs in cis or trans conformations. The results unequivocally demonstrate the utility of both cis- and trans-locked alkene isosteres as close geometric mimics of peptides bound to a protein target. Building on this result, we identified a specific case in which Pin1 differentially affects the rate of dephosphorylation catalyzed by two phosphatases (Scp1 and Ssu72) that target the same serine residue in the CTD heptad repeat but have different preferences for the isomerization state of the adjacent proline residue. These data exemplify for the first time how modulation of proline isomerization can kinetically impact signal transduction in transcription regulation.
真核 RNA 聚合酶 II 的 C 端结构域(CTD)是 RNA 聚合酶 II 介导的转录的重要调节剂。它由多个重复的共有序列 Tyr(1)Ser(2)Pro(3)Thr(4)Ser(5)Pro(6)Ser(7)组成。CTD 对转录的调节是通过丝氨酸的磷酸化和两个脯氨酸的脯氨酸异构化来介导的。有趣的是,磷酸化位点通常靠近脯氨酸,因此相邻脯氨酸的构象可能会影响相应激酶和磷酸酶的特异性。这两种调节机制之间的交叉对话的实验证据一直难以捉摸。Pin1 是一种高度保守的磷酸化特异性肽基脯氨酰顺反异构酶(PPIase),它在体内将磷酸化-Ser/Thr (pSer/Thr)-Pro 基序识别为其主要底物之一,包括 CTD。在本研究中,我们提供了结构快照和动力学证据,支持了脯氨酸异构化和磷酸化之间的交叉对话的概念。我们确定了 Pin1 与两种底物类似物结合的结构,这两种类似物模拟了 cis 或 trans 构象中含有 pSer/Thr-Pro 基序的肽。结果无可置疑地证明了 cis-和 trans-锁定烯丙基类似物作为与蛋白质靶标结合的肽的紧密几何类似物的实用性。基于这一结果,我们确定了一个特定的例子,其中 Pin1 以不同的方式影响两种磷酸酶(Scp1 和 Ssu72)催化的去磷酸化反应的速率,这两种磷酸酶针对 CTD 七肽重复中的同一丝氨酸残基,但对相邻脯氨酸残基的异构化状态有不同的偏好。这些数据首次例证了如何调节脯氨酸异构化可以在转录调控的信号转导中产生动力学影响。