Suppr超能文献

CTD 密码中脯氨酰异构化/磷酸化交叉对话的结构和动力学分析。

Structural and kinetic analysis of prolyl-isomerization/phosphorylation cross-talk in the CTD code.

机构信息

Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, TX 78712, USA.

出版信息

ACS Chem Biol. 2012 Aug 17;7(8):1462-70. doi: 10.1021/cb3000887. Epub 2012 Jun 18.

Abstract

The C-terminal domain (CTD) of eukaryotic RNA polymerase II is an essential regulator for RNA polymerase II-mediated transcription. It is composed of multiple repeats of a consensus sequence Tyr(1)Ser(2)Pro(3)Thr(4)Ser(5)Pro(6)Ser(7). CTD regulation of transcription is mediated by both phosphorylation of the serines and prolyl isomerization of the two prolines. Interestingly, the phosphorylation sites are typically close to prolines, and thus the conformation of the adjacent proline could impact the specificity of the corresponding kinases and phosphatases. Experimental evidence of cross-talk between these two regulatory mechanisms has been elusive. Pin1 is a highly conserved phosphorylation-specific peptidyl-prolyl isomerase (PPIase) that recognizes the phospho-Ser/Thr (pSer/Thr)-Pro motif with CTD as one of its primary substrates in vivo. In the present study, we provide structural snapshots and kinetic evidence that support the concept of cross-talk between prolyl isomerization and phosphorylation. We determined the structures of Pin1 bound with two substrate isosteres that mimic peptides containing pSer/Thr-Pro motifs in cis or trans conformations. The results unequivocally demonstrate the utility of both cis- and trans-locked alkene isosteres as close geometric mimics of peptides bound to a protein target. Building on this result, we identified a specific case in which Pin1 differentially affects the rate of dephosphorylation catalyzed by two phosphatases (Scp1 and Ssu72) that target the same serine residue in the CTD heptad repeat but have different preferences for the isomerization state of the adjacent proline residue. These data exemplify for the first time how modulation of proline isomerization can kinetically impact signal transduction in transcription regulation.

摘要

真核 RNA 聚合酶 II 的 C 端结构域(CTD)是 RNA 聚合酶 II 介导的转录的重要调节剂。它由多个重复的共有序列 Tyr(1)Ser(2)Pro(3)Thr(4)Ser(5)Pro(6)Ser(7)组成。CTD 对转录的调节是通过丝氨酸的磷酸化和两个脯氨酸的脯氨酸异构化来介导的。有趣的是,磷酸化位点通常靠近脯氨酸,因此相邻脯氨酸的构象可能会影响相应激酶和磷酸酶的特异性。这两种调节机制之间的交叉对话的实验证据一直难以捉摸。Pin1 是一种高度保守的磷酸化特异性肽基脯氨酰顺反异构酶(PPIase),它在体内将磷酸化-Ser/Thr (pSer/Thr)-Pro 基序识别为其主要底物之一,包括 CTD。在本研究中,我们提供了结构快照和动力学证据,支持了脯氨酸异构化和磷酸化之间的交叉对话的概念。我们确定了 Pin1 与两种底物类似物结合的结构,这两种类似物模拟了 cis 或 trans 构象中含有 pSer/Thr-Pro 基序的肽。结果无可置疑地证明了 cis-和 trans-锁定烯丙基类似物作为与蛋白质靶标结合的肽的紧密几何类似物的实用性。基于这一结果,我们确定了一个特定的例子,其中 Pin1 以不同的方式影响两种磷酸酶(Scp1 和 Ssu72)催化的去磷酸化反应的速率,这两种磷酸酶针对 CTD 七肽重复中的同一丝氨酸残基,但对相邻脯氨酸残基的异构化状态有不同的偏好。这些数据首次例证了如何调节脯氨酸异构化可以在转录调控的信号转导中产生动力学影响。

相似文献

1
Structural and kinetic analysis of prolyl-isomerization/phosphorylation cross-talk in the CTD code.
ACS Chem Biol. 2012 Aug 17;7(8):1462-70. doi: 10.1021/cb3000887. Epub 2012 Jun 18.
2
Pin1 modulates the dephosphorylation of the RNA polymerase II C-terminal domain by yeast Fcp1.
FEBS Lett. 2002 Feb 27;513(2-3):305-11. doi: 10.1016/s0014-5793(02)02288-3.
4
Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins.
Mol Cell. 2000 Oct;6(4):873-83. doi: 10.1016/s1097-2765(05)00083-3.
6
Phosphorylation-dependent prolyl isomerization: a novel signaling regulatory mechanism.
Cell Mol Life Sci. 1999 Nov 30;56(9-10):788-806. doi: 10.1007/s000180050026.
8
Structural basis for phosphoserine-proline recognition by group IV WW domains.
Nat Struct Biol. 2000 Aug;7(8):639-43. doi: 10.1038/77929.
10
A common structural scaffold in CTD phosphatases that supports distinct catalytic mechanisms.
Proteins. 2014 Jan;82(1):103-18. doi: 10.1002/prot.24376. Epub 2013 Sep 10.

引用本文的文献

1
Sequence and structural determinants of RNAPII CTD phase-separation and phosphorylation by CDK7.
Nat Commun. 2024 Oct 24;15(1):9163. doi: 10.1038/s41467-024-53305-2.
3
Collaborators or competitors: the communication between RNA polymerase II and the nucleosome during eukaryotic transcription.
Crit Rev Biochem Mol Biol. 2024 Feb-Apr;59(1-2):1-19. doi: 10.1080/10409238.2024.2306365. Epub 2024 Jan 30.
5
Targeted Covalent Inhibition of Small CTD Phosphatase 1 to Promote the Degradation of the REST Transcription Factor in Human Cells.
J Med Chem. 2022 Jan 13;65(1):507-519. doi: 10.1021/acs.jmedchem.1c01655. Epub 2021 Dec 21.
6
What's all the phos about? Insights into the phosphorylation state of the RNA polymerase II C-terminal domain mass spectrometry.
RSC Chem Biol. 2021 Jun 3;2(4):1084-1095. doi: 10.1039/d1cb00083g. eCollection 2021 Aug 5.
8
LigGrep: a tool for filtering docked poses to improve virtual-screening hit rates.
J Cheminform. 2020 Nov 11;12(1):69. doi: 10.1186/s13321-020-00471-2.
9
Allostery and Epistasis: Emergent Properties of Anisotropic Networks.
Entropy (Basel). 2020 Jun 16;22(6):667. doi: 10.3390/e22060667.
10
Diverse and conserved roles of the protein Ssu72 in eukaryotes: from yeast to higher organisms.
Curr Genet. 2021 Apr;67(2):195-206. doi: 10.1007/s00294-020-01132-5. Epub 2020 Nov 26.

本文引用的文献

2
A reduced-amide inhibitor of Pin1 binds in a conformation resembling a twisted-amide transition state.
Biochemistry. 2011 Nov 8;50(44):9545-50. doi: 10.1021/bi201055c. Epub 2011 Oct 18.
3
Stereospecific gating of functional motions in Pin1.
Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12289-94. doi: 10.1073/pnas.1019382108. Epub 2011 Jul 11.
5
cis-Proline-mediated Ser(P)5 dephosphorylation by the RNA polymerase II C-terminal domain phosphatase Ssu72.
J Biol Chem. 2011 Feb 18;286(7):5717-26. doi: 10.1074/jbc.M110.197129. Epub 2010 Dec 15.
6
Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex.
Nature. 2010 Oct 7;467(7316):729-33. doi: 10.1038/nature09391. Epub 2010 Sep 22.
7
Toward flexibility-activity relationships by NMR spectroscopy: dynamics of Pin1 ligands.
J Am Chem Soc. 2010 Apr 28;132(16):5607-9. doi: 10.1021/ja9096779.
9
Pin1 modulates RNA polymerase II activity during the transcription cycle.
Genes Dev. 2007 Nov 15;21(22):2950-62. doi: 10.1101/gad.1592807.
10
On the benefit of bivalency in peptide ligand/pin1 interactions.
J Mol Biol. 2007 Nov 16;374(1):147-61. doi: 10.1016/j.jmb.2007.09.019. Epub 2007 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验