Suppr超能文献

转录因子 TFEB 将 mTORC1 信号与溶酶体稳态的转录控制联系起来。

The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis.

机构信息

Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA.

出版信息

Sci Signal. 2012 Jun 12;5(228):ra42. doi: 10.1126/scisignal.2002790.

Abstract

Lysosomes are the major cellular site for clearance of defective organelles and digestion of internalized material. Demand on lysosomal capacity can vary greatly, and lysosomal function must be adjusted to maintain cellular homeostasis. Here, we identified an interaction between the lysosome-localized mechanistic target of rapamycin complex 1 (mTORC1) and the transcription factor TFEB (transcription factor EB), which promotes lysosome biogenesis. When lysosomal activity was adequate, mTOR-dependent phosphorylation of TFEB on Ser(211) triggered the binding of 14-3-3 proteins to TFEB, resulting in retention of the transcription factor in the cytoplasm. Inhibition of lysosomal function reduced the mTOR-dependent phosphorylation of TFEB, resulting in diminished interactions between TFEB and 14-3-3 proteins and the translocation of TFEB into the nucleus, where it could stimulate genes involved in lysosomal biogenesis. These results identify TFEB as a target of mTOR and suggest a mechanism for matching the transcriptional regulation of genes encoding proteins of autophagosomes and lysosomes to cellular need. The closely related transcription factors MITF (microphthalmia transcription factor) and TFE3 (transcription factor E3) also localized to lysosomes and accumulated in the nucleus when lysosome function was inhibited, thus broadening the range of physiological contexts under which this regulatory mechanism may prove important.

摘要

溶酶体是清除有缺陷的细胞器和消化内吞物质的主要细胞部位。溶酶体的容量需求差异很大,因此必须调整溶酶体的功能以维持细胞内稳态。在这里,我们发现溶酶体定位的雷帕霉素靶蛋白复合体 1(mTORC1)和转录因子 TFEB(转录因子 EB)之间存在相互作用,这种相互作用促进了溶酶体的生物发生。当溶酶体活性充足时,mTOR 依赖性磷酸化 TFEB 的 Ser(211)会触发 14-3-3 蛋白与 TFEB 结合,从而使转录因子保留在细胞质中。溶酶体功能的抑制会降低 mTOR 依赖性 TFEB 磷酸化,从而减少 TFEB 和 14-3-3 蛋白之间的相互作用,并促使 TFEB 转位到细胞核内,在细胞核内,它可以刺激参与溶酶体生物发生的基因。这些结果表明 TFEB 是 mTOR 的靶标,并提出了一种机制,可将自噬体和溶酶体蛋白编码基因的转录调控与细胞需求相匹配。密切相关的转录因子 MITF(小眼畸形相关转录因子)和 TFE3(转录因子 E3)也定位到溶酶体,并且当溶酶体功能受到抑制时会在核内积累,从而拓宽了这种调节机制可能重要的生理背景范围。

相似文献

2
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB.
EMBO J. 2012 Mar 7;31(5):1095-108. doi: 10.1038/emboj.2012.32. Epub 2012 Feb 17.
4
AMPK-dependent phosphorylation is required for transcriptional activation of TFEB and TFE3.
Autophagy. 2021 Dec;17(12):3957-3975. doi: 10.1080/15548627.2021.1898748. Epub 2021 Mar 18.
5
MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB.
Autophagy. 2012 Jun;8(6):903-14. doi: 10.4161/auto.19653. Epub 2012 May 11.
7
Impaired TFEB-mediated lysosomal biogenesis promotes the development of pancreatitis in mice and is associated with human pancreatitis.
Autophagy. 2019 Nov;15(11):1954-1969. doi: 10.1080/15548627.2019.1596486. Epub 2019 Mar 30.
8
Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes.
J Cell Biol. 2013 Feb 18;200(4):475-91. doi: 10.1083/jcb.201209135. Epub 2013 Feb 11.
10
TFEB, a novel mTORC1 effector implicated in lysosome biogenesis, endocytosis and autophagy.
Cell Cycle. 2011 Dec 1;10(23):3987-8. doi: 10.4161/cc.10.23.18251.

引用本文的文献

1
ATG conjugation-dependent/independent mechanisms underlie lysosomal stress-induced TFEB regulation.
J Cell Biol. 2025 Oct 6;224(10). doi: 10.1083/jcb.202307079. Epub 2025 Aug 29.
2
Rag GTPases Suppress Renal Cystic Disease by Inhibiting TFEB Independently of mTORC1.
bioRxiv. 2025 Jul 31:2025.07.24.664930. doi: 10.1101/2025.07.24.664930.
3
Lysosomal membrane homeostasis and its importance in physiology and disease.
Nat Rev Mol Cell Biol. 2025 Aug 4. doi: 10.1038/s41580-025-00873-w.
4
Lineage trajectories and fate determinants of postnatal neural stem cells and ependymal cells in the developing ventricular zone.
PLoS Biol. 2025 Jul 30;23(7):e3003318. doi: 10.1371/journal.pbio.3003318. eCollection 2025 Jul.
5
TFEB overexpression alleviates autophagy-lysosomal deficits caused by progranulin insufficiency.
Sci Rep. 2025 Jul 19;15(1):26217. doi: 10.1038/s41598-025-12268-0.
6
The transcription factors Tfeb and Tfe3 are required for survival and embryonic development of pancreas and liver in zebrafish.
PLoS Genet. 2025 Jun 27;21(6):e1011754. doi: 10.1371/journal.pgen.1011754. eCollection 2025 Jun.
7
10
mTOR pathway diseases: challenges and opportunities from bench to bedside and the mTOR node.
Orphanet J Rare Dis. 2025 May 27;20(1):256. doi: 10.1186/s13023-025-03740-1.

本文引用的文献

1
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB.
EMBO J. 2012 Mar 7;31(5):1095-108. doi: 10.1038/emboj.2012.32. Epub 2012 Feb 17.
2
Subversion of membrane transport pathways by vacuolar pathogens.
J Cell Biol. 2011 Dec 12;195(6):943-52. doi: 10.1083/jcb.201105019. Epub 2011 Nov 28.
4
Rapamycin passes the torch: a new generation of mTOR inhibitors.
Nat Rev Drug Discov. 2011 Oct 31;10(11):868-80. doi: 10.1038/nrd3531.
5
The dynamic nature of autophagy in cancer.
Genes Dev. 2011 Oct 1;25(19):1999-2010. doi: 10.1101/gad.17558811.
6
Transcriptional activation of lysosomal exocytosis promotes cellular clearance.
Dev Cell. 2011 Sep 13;21(3):421-30. doi: 10.1016/j.devcel.2011.07.016. Epub 2011 Sep 1.
7
Regulation of TFEB and V-ATPases by mTORC1.
EMBO J. 2011 Jul 29;30(16):3242-58. doi: 10.1038/emboj.2011.257.
8
Fighting neurodegeneration with rapamycin: mechanistic insights.
Nat Rev Neurosci. 2011 Jul 20;12(8):437-52. doi: 10.1038/nrn3068.
9
Biology and clinical relevance of the micropthalmia family of transcription factors in human cancer.
J Clin Oncol. 2011 Sep 1;29(25):3474-82. doi: 10.1200/JCO.2010.32.6223. Epub 2011 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验