Koç University, Department of Psychology, İstanbul, Turkey.
Neuropsychologia. 2013 Jan;51(2):293-308. doi: 10.1016/j.neuropsychologia.2012.08.002. Epub 2012 Aug 10.
We tested human participants on a modified peak procedure in order to investigate the relation between interval timing and reward processing, and examine the interaction of this relation with three different dopamine-related gene polymorphisms. These gene polymorphisms affected the expression of catechol-o-methyltransferase, which catabolizes synaptic dopamine primarily in the prefrontal cortex (COMT Val158Met polymorphism), D2 dopamine receptors primarily in the striatum (DRD2/ANKK1-Taq1a polymorphism), and dopamine transporters, which clear synaptic dopamine in the striatum (DAT 3' VNTR variant). The inclusion of these polymorphisms allowed us to investigate dissociable aspects of the dopamine system and their interaction with reward magnitude manipulations in shaping timed behavior. These genes were chosen for their roles in reward processing and cortico-striatal information processing that have been implicated for interval timing. Consistent with recent animal studies, human participants initiated their timed anticipatory responding earlier when expecting a larger reward in the absence of any changes in the timing of response termination or perceived time. This effect however was specific to two out of four evaluated COMT and DRD2 polymorphism combinations that lead to high prefrontal dopamine coupled with high D2 density and low prefrontal dopamine coupled with low D2 density. Larger rewards also decreased timing precision indices, some of which interacted with the COMT polymorphism. Furthermore, the COMT polymorphism that leads to higher prefrontal dopamine resulted in weaker manifestation of memory variability (relative to threshold variability) in timed behavior. There was no effect of DAT polymorphisms on any of the core behavioral measures. These results suggest that the reward modulates decision thresholds rather than clock speed, and that these effects are specific to COMT and DRD2 epistasis effects that presumably constitute a balanced prefrontal and striatal dopamine transmission.
我们在改良的峰程序上对人类参与者进行了测试,以研究间隔时间和奖励处理之间的关系,并检验这种关系与三种不同的多巴胺相关基因多态性的相互作用。这些基因多态性影响儿茶酚-O-甲基转移酶的表达,儿茶酚-O-甲基转移酶主要在额皮质(COMT Val158Met 多态性)中分解突触多巴胺,多巴胺 D2 受体主要在纹状体(DRD2/ANKK1-Taq1a 多态性)中分解,多巴胺转运体主要在纹状体中清除突触多巴胺(DAT3'VNTR 变体)。包含这些多态性使我们能够研究多巴胺系统的可分离方面及其与奖励幅度操纵的相互作用,从而塑造定时行为。选择这些基因是因为它们在奖励处理和皮质-纹状体信息处理中的作用与间隔时间有关。与最近的动物研究一致,当人类参与者在没有任何改变反应终止时间或感知时间的情况下,预期有更大的奖励时,他们会更早地开始进行定时预期反应。然而,这种效应仅针对四种评估的 COMT 和 DRD2 多态性组合中的两种,这导致前额叶多巴胺升高,同时 D2 密度升高,前额叶多巴胺降低,同时 D2 密度降低。更大的奖励也降低了定时精度指数,其中一些与 COMT 多态性相互作用。此外,导致前额叶多巴胺升高的 COMT 多态性导致定时行为中的记忆变异性(相对于阈值变异性)表现较弱。DAT 多态性对任何核心行为测量都没有影响。这些结果表明,奖励调节决策阈值而不是时钟速度,并且这些效应是特定于 COMT 和 DRD2 上位性效应的,这些效应可能构成平衡的前额叶和纹状体多巴胺传递。