Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
Appl Environ Microbiol. 2012 Nov;78(21):7538-48. doi: 10.1128/AEM.01675-12. Epub 2012 Aug 17.
Fusel alcohols are precursors and contributors to flavor and aroma compounds in fermented beverages, and some are under investigation as biofuels. The decarboxylation of 2-oxo acids is a key step in the Ehrlich pathway for fusel alcohol production. In Saccharomyces cerevisiae, five genes share sequence similarity with genes encoding thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases (2ODCs). PDC1, PDC5, and PDC6 encode differentially regulated pyruvate decarboxylase isoenzymes; ARO10 encodes a 2-oxo-acid decarboxylase with broad substrate specificity, and THI3 has not yet been shown to encode an active decarboxylase. Despite the importance of fusel alcohol production in S. cerevisiae, the substrate specificities of these five 2ODCs have not been systematically compared. When the five 2ODCs were individually overexpressed in a pdc1Δ pdc5Δ pdc6Δ aro10Δ thi3Δ strain, only Pdc1, Pdc5, and Pdc6 catalyzed the decarboxylation of the linear-chain 2-oxo acids pyruvate, 2-oxo-butanoate, and 2-oxo-pentanoate in cell extracts. The presence of a Pdc isoenzyme was also required for the production of n-propanol and n-butanol in cultures grown on threonine and norvaline, respectively, as nitrogen sources. These results demonstrate the importance of pyruvate decarboxylases in the natural production of n-propanol and n-butanol by S. cerevisiae. No decarboxylation activity was found for Thi3 with any of the substrates tested. Only Aro10 and Pdc5 catalyzed the decarboxylation of the aromatic substrate phenylpyruvate, with Aro10 showing superior kinetic properties. Aro10, Pdc1, Pdc5, and Pdc6 exhibited activity with all branched-chain and sulfur-containing 2-oxo acids tested but with markedly different decarboxylation kinetics. The high affinity of Aro10 identified it as a key contributor to the production of branched-chain and sulfur-containing fusel alcohols.
发酵饮料中的酒香和风味化合物的前体和贡献者是杂醇醇,其中一些正在被作为生物燃料进行研究。2- 酮酸脱羧是酵母发酵生产杂醇醇的 Ehrlich 途径中的关键步骤。在酿酒酵母中,有五个基因与编码硫胺素焦磷酸依赖性 2- 酮酸脱羧酶(2ODC)的基因具有序列相似性。PDC1、PDC5 和 PDC6 编码差异调节的丙酮酸脱羧酶同工酶;ARO10 编码具有广泛底物特异性的 2- 酮酸脱羧酶,而 THI3 尚未被证明编码具有活性的脱羧酶。尽管杂醇醇的生产在酿酒酵母中很重要,但这五个 2ODC 的底物特异性尚未得到系统比较。当这五个 2ODC 分别在 pdc1Δ pdc5Δ pdc6Δ aro10Δ thi3Δ 菌株中过表达时,只有 Pdc1、Pdc5 和 Pdc6 能够在细胞提取物中催化线性链 2- 酮酸丙酮酸、2- 酮丁酸和 2- 酮戊酸的脱羧反应。在以苏氨酸和正缬氨酸为氮源培养的培养液中,分别产生 n- 丙醇和 n- 丁醇时,也需要存在 Pdc 同工酶。这些结果表明,在酿酒酵母自然产生 n- 丙醇和 n- 丁醇的过程中,丙酮酸脱羧酶具有重要作用。用任何测试的底物都没有发现 Thi3 的脱羧活性。只有 Aro10 和 Pdc5 能够催化芳香族底物苯丙酮酸的脱羧反应,而 Aro10 表现出更好的动力学性质。Aro10、Pdc1、Pdc5 和 Pdc6 对所有支链和含硫 2- 酮酸都表现出活性,但脱羧动力学明显不同。Aro10 的高亲和力使其成为支链和含硫杂醇醇产生的关键贡献者。