Suppr超能文献

在酿酒酵母中依赖硫胺素焦磷酸的 2-氧代酸脱羧酶的底物特异性。

Substrate specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae.

机构信息

Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.

出版信息

Appl Environ Microbiol. 2012 Nov;78(21):7538-48. doi: 10.1128/AEM.01675-12. Epub 2012 Aug 17.

Abstract

Fusel alcohols are precursors and contributors to flavor and aroma compounds in fermented beverages, and some are under investigation as biofuels. The decarboxylation of 2-oxo acids is a key step in the Ehrlich pathway for fusel alcohol production. In Saccharomyces cerevisiae, five genes share sequence similarity with genes encoding thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases (2ODCs). PDC1, PDC5, and PDC6 encode differentially regulated pyruvate decarboxylase isoenzymes; ARO10 encodes a 2-oxo-acid decarboxylase with broad substrate specificity, and THI3 has not yet been shown to encode an active decarboxylase. Despite the importance of fusel alcohol production in S. cerevisiae, the substrate specificities of these five 2ODCs have not been systematically compared. When the five 2ODCs were individually overexpressed in a pdc1Δ pdc5Δ pdc6Δ aro10Δ thi3Δ strain, only Pdc1, Pdc5, and Pdc6 catalyzed the decarboxylation of the linear-chain 2-oxo acids pyruvate, 2-oxo-butanoate, and 2-oxo-pentanoate in cell extracts. The presence of a Pdc isoenzyme was also required for the production of n-propanol and n-butanol in cultures grown on threonine and norvaline, respectively, as nitrogen sources. These results demonstrate the importance of pyruvate decarboxylases in the natural production of n-propanol and n-butanol by S. cerevisiae. No decarboxylation activity was found for Thi3 with any of the substrates tested. Only Aro10 and Pdc5 catalyzed the decarboxylation of the aromatic substrate phenylpyruvate, with Aro10 showing superior kinetic properties. Aro10, Pdc1, Pdc5, and Pdc6 exhibited activity with all branched-chain and sulfur-containing 2-oxo acids tested but with markedly different decarboxylation kinetics. The high affinity of Aro10 identified it as a key contributor to the production of branched-chain and sulfur-containing fusel alcohols.

摘要

发酵饮料中的酒香和风味化合物的前体和贡献者是杂醇醇,其中一些正在被作为生物燃料进行研究。2- 酮酸脱羧是酵母发酵生产杂醇醇的 Ehrlich 途径中的关键步骤。在酿酒酵母中,有五个基因与编码硫胺素焦磷酸依赖性 2- 酮酸脱羧酶(2ODC)的基因具有序列相似性。PDC1、PDC5 和 PDC6 编码差异调节的丙酮酸脱羧酶同工酶;ARO10 编码具有广泛底物特异性的 2- 酮酸脱羧酶,而 THI3 尚未被证明编码具有活性的脱羧酶。尽管杂醇醇的生产在酿酒酵母中很重要,但这五个 2ODC 的底物特异性尚未得到系统比较。当这五个 2ODC 分别在 pdc1Δ pdc5Δ pdc6Δ aro10Δ thi3Δ 菌株中过表达时,只有 Pdc1、Pdc5 和 Pdc6 能够在细胞提取物中催化线性链 2- 酮酸丙酮酸、2- 酮丁酸和 2- 酮戊酸的脱羧反应。在以苏氨酸和正缬氨酸为氮源培养的培养液中,分别产生 n- 丙醇和 n- 丁醇时,也需要存在 Pdc 同工酶。这些结果表明,在酿酒酵母自然产生 n- 丙醇和 n- 丁醇的过程中,丙酮酸脱羧酶具有重要作用。用任何测试的底物都没有发现 Thi3 的脱羧活性。只有 Aro10 和 Pdc5 能够催化芳香族底物苯丙酮酸的脱羧反应,而 Aro10 表现出更好的动力学性质。Aro10、Pdc1、Pdc5 和 Pdc6 对所有支链和含硫 2- 酮酸都表现出活性,但脱羧动力学明显不同。Aro10 的高亲和力使其成为支链和含硫杂醇醇产生的关键贡献者。

相似文献

1
Substrate specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2012 Nov;78(21):7538-48. doi: 10.1128/AEM.01675-12. Epub 2012 Aug 17.
4
Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2003 Aug;69(8):4534-41. doi: 10.1128/AEM.69.8.4534-4541.2003.
10
THI3 contributes to isoamyl alcohol biosynthesis through thiamine diphosphate homeostasis.
J Biosci Bioeng. 2024 Feb;137(2):108-114. doi: 10.1016/j.jbiosc.2023.11.006. Epub 2023 Dec 15.

引用本文的文献

1
Co-fermentation of and enhances the flavor characteristic of mature coconut water: Insights from volatile and non-volatile profiles.
Food Chem X. 2025 Jul 24;29:102832. doi: 10.1016/j.fochx.2025.102832. eCollection 2025 Jul.
3
4
Engineering the L-tryptophan metabolism for efficient de novo biosynthesis of tryptophol in Saccharomyces cerevisiae.
Biotechnol Biofuels Bioprod. 2024 Oct 16;17(1):130. doi: 10.1186/s13068-024-02576-4.
5
A highly efficient transcriptome-based biosynthesis of non-ethanol chemicals in Crabtree negative Saccharomyces cerevisiae.
Biotechnol Biofuels Bioprod. 2023 Mar 4;16(1):37. doi: 10.1186/s13068-023-02276-5.
8
investigation of riboswitches in fungi: structural and dynamical insights into TPP riboswitches in .
RNA Biol. 2022;19(1):90-103. doi: 10.1080/15476286.2021.2015174. Epub 2021 Dec 31.
9
Improvement of 2-phenylethanol production in Saccharomyces cerevisiae by evolutionary and rational metabolic engineering.
PLoS One. 2021 Oct 19;16(10):e0258180. doi: 10.1371/journal.pone.0258180. eCollection 2021.

本文引用的文献

1
Resolving phenylalanine metabolism sheds light on natural synthesis of penicillin G in Penicillium chrysogenum.
Eukaryot Cell. 2012 Feb;11(2):238-49. doi: 10.1128/EC.05285-11. Epub 2011 Dec 9.
2
Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae.
FEBS J. 2011 Jun;278(11):1842-53. doi: 10.1111/j.1742-4658.2011.08103.x. Epub 2011 Apr 18.
5
Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol.
Microb Cell Fact. 2008 Dec 3;7:36. doi: 10.1186/1475-2859-7-36.
6
The early steps of glucose signalling in yeast.
FEMS Microbiol Rev. 2008 Jul;32(4):673-704. doi: 10.1111/j.1574-6976.2008.00117.x.
7
Screening of cider yeasts for sparkling cider production (Champenoise method).
Food Microbiol. 2008 Aug;25(5):690-7. doi: 10.1016/j.fm.2008.03.004. Epub 2008 Mar 15.
8
The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism.
Appl Environ Microbiol. 2008 Apr;74(8):2259-66. doi: 10.1128/AEM.02625-07. Epub 2008 Feb 15.
9
Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels.
Nature. 2008 Jan 3;451(7174):86-9. doi: 10.1038/nature06450.
10
Metabolic engineering of Escherichia coli for 1-butanol production.
Metab Eng. 2008 Nov;10(6):305-11. doi: 10.1016/j.ymben.2007.08.003. Epub 2007 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验