Suppr超能文献

乳酸作为睡眠的生物标志物。

Lactate as a biomarker for sleep.

机构信息

Pinnacle Technology, Inc., Lawrence, KS 66046, USA.

出版信息

Sleep. 2012 Sep 1;35(9):1209-22. doi: 10.5665/sleep.2072.

Abstract

STUDY OBJECTIVES

An ideal biomarker for sleep should change rapidly with sleep onset, remain at a detectably differential level throughout the sleep period, and exhibit a rapid change with waking. Currently, no molecular marker has been identified that exhibits all three properties. This study examined three substances (lactate, glucose, and glutamate) for suitability as a sleep biomarker.

DESIGN

Using amperometric biosensor technology in conjunction with electroencephalograph (EEG) and electromyograph (EMG) monitoring, extracellular concentrations of lactate and glucose (Cohort 1) as well as lactate and glutamate (Cohort 2) were recorded over multiple sleep/wake cycles.

PATIENTS OR PARTICIPANTS

There were 12 C57Bl/6J male mice (3-5 mo old).

INTERVENTIONS

Sleep and waking transitions were identified using EEG recordings. Extracellular concentrations of lactate, glucose, and glutamate were evaluated before and during transition events as well as during extended sleep and during a 6-h sleep deprivation period.

MEASUREMENTS AND RESULTS

Rapid and sustained increases in cortical lactate concentration (approximately 15 μM/min) were immediately observed upon waking and during rapid eye movement sleep. Elevated lactate concentration was also maintained throughout a 6-h period of continuous waking. A persistent and sustained decline in lactate concentration was measured during nonrapid eye movement sleep. Glutamate exhibited similar patterns, but with a much slower rise and decline (approximately 0.03 μM/min). Glucose concentration changes did not demonstrate a clear correlation with either sleep or wake.

CONCLUSIONS

These findings indicate that extracellular lactate concentration is a reliable sleep/wake biomarker and can be used independently of the EEG signal.

摘要

研究目的

理想的睡眠生物标志物应该随睡眠起始快速变化,在整个睡眠期间保持可检测的差异水平,并随清醒快速变化。目前,尚未发现表现出所有三种特性的分子标志物。本研究检查了三种物质(乳酸、葡萄糖和谷氨酸)作为睡眠生物标志物的适用性。

设计

使用安培生物传感器技术结合脑电图(EEG)和肌电图(EMG)监测,记录了多个睡眠/觉醒周期中细胞外乳酸和葡萄糖(队列 1)以及乳酸和谷氨酸(队列 2)的浓度。

患者或参与者

共有 12 只 C57Bl/6J 雄性小鼠(3-5 个月大)。

干预措施

使用 EEG 记录来识别睡眠和觉醒转换。在过渡事件前后以及在延长的睡眠期间和 6 小时睡眠剥夺期间评估细胞外乳酸、葡萄糖和谷氨酸的浓度。

测量和结果

在清醒和快速眼动睡眠期间,皮质乳酸浓度(约 15 μM/min)立即迅速升高。在 6 小时连续清醒期间,也维持了升高的乳酸浓度。在非快速眼动睡眠期间,测量到乳酸浓度持续且持续下降。谷氨酸表现出类似的模式,但上升和下降速度较慢(约 0.03 μM/min)。葡萄糖浓度变化与睡眠或清醒没有明显的相关性。

结论

这些发现表明,细胞外乳酸浓度是一种可靠的睡眠/觉醒生物标志物,可独立于 EEG 信号使用。

相似文献

1
Lactate as a biomarker for sleep.
Sleep. 2012 Sep 1;35(9):1209-22. doi: 10.5665/sleep.2072.
2
Basal forebrain lactate release and promotion of cortical arousal during prolonged waking is attenuated in aging.
J Neurosci. 2009 Sep 16;29(37):11698-707. doi: 10.1523/JNEUROSCI.5773-08.2009.
3
Long-term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep and waking states.
J Neurosci. 2009 Jan 21;29(3):620-9. doi: 10.1523/JNEUROSCI.5486-08.2009.
4
Sleep/wake dependent changes in cortical glucose concentrations.
J Neurochem. 2013 Jan;124(1):79-89. doi: 10.1111/jnc.12063. Epub 2012 Nov 15.
6
Simultaneous real-time measurement of EEG/EMG and L-glutamate in mice: A biosensor study of neuronal activity during sleep.
J Electroanal Chem (Lausanne). 2011 Jun 15;656(1-2):106-113. doi: 10.1016/j.jelechem.2010.12.031.
7
Beta EEG reflects sensory processing in active wakefulness and homeostatic sleep drive in quiet wakefulness.
J Sleep Res. 2016 Jun;25(3):257-68. doi: 10.1111/jsr.12380. Epub 2016 Jan 30.
10
Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse.
Neuroscience. 2008 May 15;153(3):860-70. doi: 10.1016/j.neuroscience.2008.02.058. Epub 2008 Mar 6.

引用本文的文献

2
N-Lactoyl Amino Acids: Emerging Biomarkers in Metabolism and Disease.
Diabetes Metab Res Rev. 2025 Jul;41(5):e70060. doi: 10.1002/dmrr.70060.
3
Rest, Repair, Repeat: The Complex Relationship of Autophagy and Sleep.
J Mol Biol. 2025 May 21:169227. doi: 10.1016/j.jmb.2025.169227.
4
A ketogenic diet decreases sevoflurane-induced burst suppression in rats.
Brain Res Bull. 2025 Apr;223:111274. doi: 10.1016/j.brainresbull.2025.111274. Epub 2025 Feb 24.
5
ATP-sensitive potassium channels alter glycolytic flux to modulate cortical activity and sleep.
Proc Natl Acad Sci U S A. 2025 Feb 25;122(8):e2416578122. doi: 10.1073/pnas.2416578122. Epub 2025 Feb 18.
6
Multimodal integrated flexible neural probe for monitoring of EEG and lactic acid.
RSC Adv. 2024 Nov 6;14(48):35520-35528. doi: 10.1039/d4ra06336h. eCollection 2024 Nov 4.
10
Glial metabolism versatility regulates mushroom body-driven behavioral output in .
Learn Mem. 2024 Jun 11;31(5). doi: 10.1101/lm.053823.123. Print 2024 May.

本文引用的文献

1
Simultaneous real-time measurement of EEG/EMG and L-glutamate in mice: A biosensor study of neuronal activity during sleep.
J Electroanal Chem (Lausanne). 2011 Jun 15;656(1-2):106-113. doi: 10.1016/j.jelechem.2010.12.031.
2
Sleep duration varies as a function of glutamate and GABA in rat pontine reticular formation.
J Neurochem. 2011 Aug;118(4):571-80. doi: 10.1111/j.1471-4159.2011.07350.x. Epub 2011 Jul 1.
3
Astrocyte-neuron lactate transport is required for long-term memory formation.
Cell. 2011 Mar 4;144(5):810-23. doi: 10.1016/j.cell.2011.02.018.
4
Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex.
J Neurosci. 2010 Nov 10;30(45):15298-303. doi: 10.1523/JNEUROSCI.0762-10.2010.
5
Long-term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep and waking states.
J Neurosci. 2009 Jan 21;29(3):620-9. doi: 10.1523/JNEUROSCI.5486-08.2009.
6
Rapid changes in glutamate levels in the posterior hypothalamus across sleep-wake states in freely behaving rats.
Am J Physiol Regul Integr Comp Physiol. 2008 Dec;295(6):R2041-9. doi: 10.1152/ajpregu.90541.2008. Epub 2008 Sep 24.
7
In-vivo electrochemistry: what can we learn about living systems?
Chem Rev. 2008 Jul;108(7):2462-81. doi: 10.1021/cr068082i. Epub 2008 Jun 18.
8
Second-by-second measures of L-glutamate in the prefrontal cortex and striatum of freely moving mice.
J Pharmacol Exp Ther. 2008 Feb;324(2):725-31. doi: 10.1124/jpet.107.131698. Epub 2007 Nov 16.
9
Activity-dependent regulation of energy metabolism by astrocytes: an update.
Glia. 2007 Sep;55(12):1251-1262. doi: 10.1002/glia.20528.
10
Changes in extracellular glutamate levels in rat orbitofrontal cortex during sleep and wakefulness.
Arch Med Res. 2007 Jan;38(1):52-5. doi: 10.1016/j.arcmed.2006.07.004. Epub 2006 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验