Suppr超能文献

通过气体抗溶剂共结晶法形成伊曲康唑-琥珀酸共晶。

Formation of itraconazole-succinic acid cocrystals by gas antisolvent cocrystallization.

机构信息

Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, Alabama 36849, USA.

出版信息

AAPS PharmSciTech. 2012 Dec;13(4):1396-406. doi: 10.1208/s12249-012-9866-4. Epub 2012 Oct 9.

Abstract

Cocrystals of itraconazole, an antifungal drug with poor bioavailability, and succinic acid, a water-soluble dicarboxylic acid, were formed by gas antisolvent (GAS) cocrystallization using pressurized CO(2) to improve itraconazole dissolution. In this study, itraconazole and succinic acid were simultaneously dissolved in a liquid solvent, tetrahydrofuran, at ambient conditions. The solution was then pressurized with CO(2), which decreased the solvating power of tetrahydrofuran and caused crystallization of itraconazole-succinic acid cocrystals. The cocrystals prepared by GAS cocrystallization were compared to those produced using a traditional liquid antisolvent, n-heptane, for crystallinity, chemical structure, thermal behavior, size and surface morphology, potential clinical relevance, and stability. Powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy analyses showed that itraconazole-succinic acid cocrystals with physical and chemical properties similar to cocrystals produced using a traditional liquid antisolvent technique can be prepared by CO(2) antisolvent cocrystallization. The dissolution profile of itraconazole was significantly enhanced through GAS cocrystallization with succinic acid, achieving over 90% dissolution in less than 2 h. The cocrystals appeared stable against thermal stress for up to 4 weeks under accelerated stability conditions, showing only moderate decreases in their degree of crystallinity but no change in their crystalline structure. This study shows the utility of an itraconazole-succinic acid cocrystal for improving itraconazole bioavailability while also demonstrating the potential for CO(2) to replace traditional liquid antisolvents in cocrystal preparation, thus making cocrystal production more environmentally benign and scale-up more feasible.

摘要

伊曲康唑的共晶,一种生物利用度差的抗真菌药物,与顺丁二酸,一种水溶性二羧酸,通过气体抗溶剂(GAS)共结晶形成,以提高伊曲康唑的溶解度。在这项研究中,伊曲康唑和丁二酸同时溶解在四氢呋喃等液体溶剂中,在环境条件下。然后用 CO2 加压,降低四氢呋喃的溶解能力,导致伊曲康唑-顺丁二酸共晶结晶。用 GAS 共结晶制备的共晶与使用传统液体抗溶剂,正庚烷,进行结晶度、化学结构、热行为、尺寸和表面形态、潜在临床相关性和稳定性的比较。粉末 X 射线衍射、傅里叶变换红外光谱、差示扫描量热法和扫描电子显微镜分析表明,通过 CO2 抗溶剂共结晶可以制备出具有与使用传统液体抗溶剂技术生产的共晶相似的物理和化学性质的伊曲康唑-顺丁二酸共晶。通过与顺丁二酸的 GAS 共结晶,伊曲康唑的溶解性能显著提高,不到 2 小时即可达到 90%以上的溶解。共晶在加速稳定性条件下,在长达 4 周的时间内对热应力表现出稳定,仅显示出适度降低结晶度,但结晶结构没有变化。这项研究表明,伊曲康唑-顺丁二酸共晶可用于提高伊曲康唑的生物利用度,同时还表明 CO2 有可能替代传统的液体抗溶剂用于共晶制备,从而使共晶生产更环保,规模更大。

相似文献

1
Formation of itraconazole-succinic acid cocrystals by gas antisolvent cocrystallization.
AAPS PharmSciTech. 2012 Dec;13(4):1396-406. doi: 10.1208/s12249-012-9866-4. Epub 2012 Oct 9.
2
Piroxicam cocrystals with phenolic coformers: preparation, characterization, and dissolution properties.
Pharm Dev Technol. 2019 Feb;24(2):199-210. doi: 10.1080/10837450.2018.1455210. Epub 2018 Apr 4.
3
Enhanced pulmonary absorption of poorly soluble itraconazole by micronized cocrystal dry powder formulations.
Eur J Pharm Biopharm. 2017 Jun;115:65-72. doi: 10.1016/j.ejpb.2017.02.013. Epub 2017 Feb 20.
4
Improving the solubility of dexlansoprazole by cocrystallization with isonicotinamide.
Eur J Pharm Sci. 2016 Mar 31;85:47-52. doi: 10.1016/j.ejps.2016.01.029. Epub 2016 Feb 1.
6
Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids.
J Am Chem Soc. 2003 Jul 16;125(28):8456-7. doi: 10.1021/ja035776p.
7
Cocrystals of diacerein: Towards the development of improved biopharmaceutical parameters.
Int J Pharm. 2020 Jan 25;574:118942. doi: 10.1016/j.ijpharm.2019.118942. Epub 2019 Dec 9.
9
Improved pharmaceutical properties of ritonavir through co-crystallization approach with liquid-assisted grinding method.
Drug Dev Ind Pharm. 2021 Oct;47(10):1633-1642. doi: 10.1080/03639045.2022.2042553. Epub 2022 Feb 25.
10
Dry Mechanochemical Synthesis of Caffeine/Oxalic Acid Cocrystals and Their Evaluation by Powder X-Ray Diffraction and Chemometrics.
J Pharm Sci. 2017 Dec;106(12):3458-3464. doi: 10.1016/j.xphs.2017.07.025. Epub 2017 Aug 7.

引用本文的文献

1
Current Perspectives on Development and Applications of Cocrystals in the Pharmaceutical and Medical Domain.
Cureus. 2024 Sep 27;16(9):e70328. doi: 10.7759/cureus.70328. eCollection 2024 Sep.
3
Cocrystals by Design: A Rational Coformer Selection Approach for Tackling the API Problems.
Pharmaceutics. 2023 Apr 6;15(4):1161. doi: 10.3390/pharmaceutics15041161.
4
Controlling the Polymorphism of Indomethacin with Poloxamer 407 in a Gas Antisolvent Crystallization Process.
ACS Omega. 2022 Nov 18;7(48):43945-43957. doi: 10.1021/acsomega.2c05259. eCollection 2022 Dec 6.
5
Screening and Preparation of Cocrystals: A Comparative Study of Mechanochemistry vs Slurry Methods.
Cryst Growth Des. 2021 Jul 7;21(7):4141-4150. doi: 10.1021/acs.cgd.1c00418. Epub 2021 Jun 9.
6
Obtaining Cocrystals by Reaction Crystallization Method: Pharmaceutical Applications.
Pharmaceutics. 2021 Jun 17;13(6):898. doi: 10.3390/pharmaceutics13060898.
7
Multicomponent crystalline solid forms of aripiprazole produced via hot melt extrusion techniques: An exploratory study.
J Drug Deliv Sci Technol. 2021 Jun;63. doi: 10.1016/j.jddst.2021.102529. Epub 2021 Apr 20.
8
Polymer-Assisted Aripiprazole-Adipic Acid Cocrystals Produced by Hot Melt Extrusion Techniques.
Cryst Growth Des. 2020 Jul;20(7):4335-4345. doi: 10.1021/acs.cgd.0c00020. Epub 2020 Jun 2.
10
Using Supercritical Fluid Technology as a Green Alternative During the Preparation of Drug Delivery Systems.
Pharmaceutics. 2019 Nov 25;11(12):629. doi: 10.3390/pharmaceutics11120629.

本文引用的文献

1
Chapter 5 itraconazole: comprehensive profile.
Profiles Drug Subst Excip Relat Methodol. 2009;34:193-264. doi: 10.1016/S1871-5125(09)34005-4. Epub 2010 Mar 16.
2
Powder X-ray diffraction method for the quantification of cocrystals in the crystallization mixture.
Drug Dev Ind Pharm. 2012 Aug;38(8):923-9. doi: 10.3109/03639045.2011.633263. Epub 2011 Nov 18.
3
Pharmaceutical cocrystals: an overview.
Int J Pharm. 2011 Oct 31;419(1-2):1-11. doi: 10.1016/j.ijpharm.2011.07.037. Epub 2011 Aug 2.
6
Formation of indomethacin-saccharin cocrystals using supercritical fluid technology.
Eur J Pharm Sci. 2009 Aug 12;38(1):9-17. doi: 10.1016/j.ejps.2009.05.010. Epub 2009 May 27.
7
Indomethacin-saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization.
Pharm Res. 2008 Mar;25(3):530-41. doi: 10.1007/s11095-007-9394-1. Epub 2007 Aug 17.
8
Physical stability enhancement of theophylline via cocrystallization.
Int J Pharm. 2006 Aug 31;320(1-2):114-23. doi: 10.1016/j.ijpharm.2006.04.018.
9
Particle size limits to meet USP content uniformity criteria for tablets and capsules.
J Pharm Sci. 2006 May;95(5):1049-59. doi: 10.1002/jps.20587.
10
Experimental study of the GAS process for producing microparticles of beclomethasone-17,21-dipropionate suitable for pulmonary delivery.
Int J Pharm. 2006 Feb 17;309(1-2):71-80. doi: 10.1016/j.ijpharm.2005.11.008. Epub 2006 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验