Suppr超能文献

单功能脯氨酸脱氢酶的晶体结构和动力学研究为理解与黄素还原和产物释放相关的底物识别和构象变化提供了线索。

Crystal structures and kinetics of monofunctional proline dehydrogenase provide insight into substrate recognition and conformational changes associated with flavin reduction and product release.

机构信息

Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA.

出版信息

Biochemistry. 2012 Dec 18;51(50):10099-108. doi: 10.1021/bi301312f. Epub 2012 Dec 5.

Abstract

Proline dehydrogenase (PRODH) catalyzes the FAD-dependent oxidation of proline to Δ(1)-pyrroline-5-carboxylate, which is the first step of proline catabolism. Here, we report the structures of proline dehydrogenase from Deinococcus radiodurans in the oxidized state complexed with the proline analogue L-tetrahydrofuroic acid and in the reduced state with the proline site vacant. The analogue binds against the si face of the FAD isoalloxazine and is protected from bulk solvent by helix α8 and the β1-α1 loop. The FAD ribityl chain adopts two conformations in the E-S complex, which is unprecedented for flavoenzymes. One of the conformations is novel for the PRODH superfamily and may contribute to the low substrate affinity of Deinococcus PRODH. Reduction of the crystalline enzyme-inhibitor complex causes profound structural changes, including 20° butterfly bending of the isoalloxazine, crankshaft rotation of the ribityl, shifting of α8 by 1.7 Å, reconfiguration of the β1-α1 loop, and rupture of the Arg291-Glu64 ion pair. These changes dramatically open the active site to facilitate product release and allow electron acceptors access to the reduced flavin. The structures suggest that the ion pair, which is conserved in the PRODH superfamily, functions as the active site gate. Mutagenesis of Glu64 to Ala decreases the catalytic efficiency 27-fold, which demonstrates the importance of the gate. Mutation of Gly63 decreases the efficiency 140-fold, which suggests that flexibility of the β1-α1 loop is essential for optimal catalysis. The large conformational changes that are required to form the E-S complex suggest that conformational selection plays a role in substrate recognition.

摘要

脯氨酸脱氢酶(PRODH)催化 FAD 依赖性脯氨酸氧化为Δ(1)-吡咯啉-5-羧酸,这是脯氨酸分解代谢的第一步。在这里,我们报道了来自耐辐射球菌的脯氨酸脱氢酶在氧化状态下与脯氨酸类似物 L-四氢呋喃酸结合的结构,以及在还原状态下空位的脯氨酸结合位点的结构。类似物结合在 FAD 异咯嗪的 si 面,由α8 螺旋和β1-α1 环保护免受体相溶剂的影响。FAD 核糖基链在 E-S 复合物中采用两种构象,这对于黄素酶来说是前所未有的。其中一种构象是 PRODH 超家族的新构象,可能导致耐辐射球菌 PRODH 对底物的亲和力较低。结晶酶-抑制剂复合物的还原引起了深刻的结构变化,包括异咯嗪的 20°蝶形弯曲、核糖基的曲柄旋转、α8 移动 1.7Å、β1-α1 环的重新配置以及 Arg291-Glu64 离子对的断裂。这些变化极大地打开了活性位点,促进了产物的释放,并允许电子受体进入还原态黄素。这些结构表明,在 PRODH 超家族中保守的离子对作为活性位点门。将 Glu64 突变为 Ala 会使催化效率降低 27 倍,这证明了该离子对的重要性。将 Gly63 突变为 Ala 会使效率降低 140 倍,这表明β1-α1 环的灵活性对于最佳催化至关重要。形成 E-S 复合物所需的大构象变化表明构象选择在底物识别中起作用。

相似文献

4
Structure and kinetics of monofunctional proline dehydrogenase from Thermus thermophilus.
J Biol Chem. 2007 May 11;282(19):14316-27. doi: 10.1074/jbc.M700912200. Epub 2007 Mar 7.
5
Covalent Modification of the Flavin in Proline Dehydrogenase by Thiazolidine-2-Carboxylate.
ACS Chem Biol. 2020 Apr 17;15(4):936-944. doi: 10.1021/acschembio.9b00935. Epub 2020 Mar 18.
8
Probing the function of a ligand-modulated dynamic tunnel in bifunctional proline utilization A (PutA).
Arch Biochem Biophys. 2021 Nov 15;712:109025. doi: 10.1016/j.abb.2021.109025. Epub 2021 Sep 15.
10
Rapid reaction kinetics of proline dehydrogenase in the multifunctional proline utilization A protein.
Biochemistry. 2012 Jan 10;51(1):511-20. doi: 10.1021/bi201603f. Epub 2011 Dec 15.

引用本文的文献

3
Noncovalent Inhibition and Covalent Inactivation of Proline Dehydrogenase by Analogs of -Propargylglycine.
Biochemistry. 2024 Nov 5;63(21):2855-2867. doi: 10.1021/acs.biochem.4c00429. Epub 2024 Oct 22.
4
Cysteamine dioxygenase (ADO) governs cancer cell mitochondrial redox homeostasis through proline metabolism.
Sci Adv. 2024 Oct 4;10(40):eadq0355. doi: 10.1126/sciadv.adq0355. Epub 2024 Oct 2.
5
Computational insights on the hydride and proton transfer mechanisms of L-proline dehydrogenase.
PLoS One. 2023 Nov 15;18(11):e0290901. doi: 10.1371/journal.pone.0290901. eCollection 2023.
6
Structure-based engineering of minimal proline dehydrogenase domains for inhibitor discovery.
Protein Eng Des Sel. 2022 Feb 17;35. doi: 10.1093/protein/gzac016.
7
Proline Oxidation Supports Mitochondrial ATP Production When Complex I Is Inhibited.
Int J Mol Sci. 2022 May 4;23(9):5111. doi: 10.3390/ijms23095111.
8
Photoinduced Covalent Irreversible Inactivation of Proline Dehydrogenase by S-Heterocycles.
ACS Chem Biol. 2021 Nov 19;16(11):2268-2279. doi: 10.1021/acschembio.1c00427. Epub 2021 Sep 20.
9
Probing the function of a ligand-modulated dynamic tunnel in bifunctional proline utilization A (PutA).
Arch Biochem Biophys. 2021 Nov 15;712:109025. doi: 10.1016/j.abb.2021.109025. Epub 2021 Sep 15.

本文引用的文献

1
Unique structural features and sequence motifs of proline utilization A (PutA).
Front Biosci (Landmark Ed). 2012 Jan 1;17(2):556-68. doi: 10.2741/3943.
2
Rapid reaction kinetics of proline dehydrogenase in the multifunctional proline utilization A protein.
Biochemistry. 2012 Jan 10;51(1):511-20. doi: 10.1021/bi201603f. Epub 2011 Dec 15.
3
Steady-state kinetic mechanism of the proline:ubiquinone oxidoreductase activity of proline utilization A (PutA) from Escherichia coli.
Arch Biochem Biophys. 2011 Dec 15;516(2):113-20. doi: 10.1016/j.abb.2011.10.011. Epub 2011 Oct 25.
4
Flavin redox switching of protein functions.
Antioxid Redox Signal. 2011 Mar 15;14(6):1079-91. doi: 10.1089/ars.2010.3417. Epub 2010 Oct 28.
5
Crystal structure of the bifunctional proline utilization A flavoenzyme from Bradyrhizobium japonicum.
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2878-83. doi: 10.1073/pnas.0906101107. Epub 2010 Feb 1.
6
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.
7
XDS.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32. doi: 10.1107/S0907444909047337. Epub 2010 Jan 22.
8
Large conformational changes in proteins: signaling and other functions.
Curr Opin Struct Biol. 2010 Apr;20(2):142-7. doi: 10.1016/j.sbi.2009.12.004. Epub 2010 Jan 8.
10
Proline oxidase functions as a mitochondrial tumor suppressor in human cancers.
Cancer Res. 2009 Aug 15;69(16):6414-22. doi: 10.1158/0008-5472.CAN-09-1223. Epub 2009 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验