Suppr超能文献

哌啶酸,一种内源性防御扩增和启动的介质,是诱导植物免疫的关键调节剂。

Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity.

机构信息

Department of Biology, Heinrich Heine University Düsseldorf, D-40225 Duesseldorf, Germany.

出版信息

Plant Cell. 2012 Dec;24(12):5123-41. doi: 10.1105/tpc.112.103564. Epub 2012 Dec 7.

Abstract

Metabolic signals orchestrate plant defenses against microbial pathogen invasion. Here, we report the identification of the non-protein amino acid pipecolic acid (Pip), a common Lys catabolite in plants and animals, as a critical regulator of inducible plant immunity. Following pathogen recognition, Pip accumulates in inoculated Arabidopsis thaliana leaves, in leaves distal from the site of inoculation, and, most specifically, in petiole exudates from inoculated leaves. Defects of mutants in AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) in systemic acquired resistance (SAR) and in basal, specific, and β-aminobutyric acid-induced resistance to bacterial infection are associated with a lack of Pip production. Exogenous Pip complements these resistance defects and increases pathogen resistance of wild-type plants. We conclude that Pip accumulation is critical for SAR and local resistance to bacterial pathogens. Our data indicate that biologically induced SAR conditions plants to more effectively synthesize the phytoalexin camalexin, Pip, and salicylic acid and primes plants for early defense gene expression. Biological priming is absent in the pipecolate-deficient ald1 mutants. Exogenous pipecolate induces SAR-related defense priming and partly restores priming responses in ald1. We conclude that Pip orchestrates defense amplification, positive regulation of salicylic acid biosynthesis, and priming to guarantee effective local resistance induction and the establishment of SAR.

摘要

代谢信号协调植物抵御微生物病原体入侵。在这里,我们报告了非蛋白氨基酸哌可酸(Pip)的鉴定,它是植物和动物中赖氨酸代谢物的常见产物,是诱导植物免疫的关键调节剂。在病原体识别后,Pip 在接种的拟南芥叶片中积累,在远离接种部位的叶片中积累,特别是在接种叶片的叶柄分泌物中积累。在系统性获得抗性(SAR)和基础、特异性和β-氨基丁酸诱导的对细菌感染的抗性中,AGD2-LIKE DEFENSE RESPONSE PROTEIN1(ALD1)突变体的缺陷与 Pip 产生的缺乏有关。外源性 Pip 可弥补这些抗性缺陷,并提高野生型植物对病原体的抗性。我们得出结论,Pip 的积累对于 SAR 和对细菌病原体的局部抗性至关重要。我们的数据表明,生物诱导的 SAR 条件使植物更有效地合成植物抗毒素 camalexin、Pip 和水杨酸,并为早期防御基因表达使植物做好准备。在缺乏哌可酸盐的 ald1 突变体中不存在生物引发。外源性哌可酸盐诱导 SAR 相关防御启动,并在一定程度上恢复 ald1 中的启动反应。我们得出结论,Pip 协调防御放大、水杨酸生物合成的正调控和启动,以保证有效的局部抗性诱导和 SAR 的建立。

相似文献

2
Biochemical Principles and Functional Aspects of Pipecolic Acid Biosynthesis in Plant Immunity.
Plant Physiol. 2017 May;174(1):124-153. doi: 10.1104/pp.17.00222. Epub 2017 Mar 22.
4
A MPK3/6-WRKY33-ALD1-Pipecolic Acid Regulatory Loop Contributes to Systemic Acquired Resistance.
Plant Cell. 2018 Oct;30(10):2480-2494. doi: 10.1105/tpc.18.00547. Epub 2018 Sep 18.
6
Flavin Monooxygenase-Generated N-Hydroxypipecolic Acid Is a Critical Element of Plant Systemic Immunity.
Cell. 2018 Apr 5;173(2):456-469.e16. doi: 10.1016/j.cell.2018.02.049. Epub 2018 Mar 22.
7
-hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in .
Proc Natl Acad Sci U S A. 2018 May 22;115(21):E4920-E4929. doi: 10.1073/pnas.1805291115. Epub 2018 May 7.
8
Characterization of a Pipecolic Acid Biosynthesis Pathway Required for Systemic Acquired Resistance.
Plant Cell. 2016 Oct;28(10):2603-2615. doi: 10.1105/tpc.16.00486. Epub 2016 Oct 6.
9
Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco.
Plant Signal Behav. 2013 Nov;8(11):e26366. doi: 10.4161/psb.26366. Epub 2013 Sep 11.
10
ALD1 Regulates Basal Immune Components and Early Inducible Defense Responses in Arabidopsis.
Mol Plant Microbe Interact. 2015 Apr;28(4):455-66. doi: 10.1094/MPMI-06-14-0187-R.

引用本文的文献

1
Mapping multi-substrate specificity of Arabidopsis aminotransferases.
Nat Plants. 2025 Sep 12. doi: 10.1038/s41477-025-02095-6.
6
Cysteine Signalling in Plant Pathogen Response.
Plant Cell Environ. 2025 Oct;48(10):7107-7122. doi: 10.1111/pce.70017. Epub 2025 Jun 16.
7
A versatile route towards 6-arylpipecolic acids.
Beilstein J Org Chem. 2025 Jun 4;21:1104-1115. doi: 10.3762/bjoc.21.88. eCollection 2025.
8
Piperideine-6-carboxylic acid regulates vitamin B6 homeostasis and modulates systemic immunity in plants.
Nat Plants. 2025 Feb;11(2):263-278. doi: 10.1038/s41477-025-01906-0. Epub 2025 Feb 14.
10
Triple interactions for induced systemic resistance in plants.
Front Plant Sci. 2024 Nov 22;15:1464710. doi: 10.3389/fpls.2024.1464710. eCollection 2024.

本文引用的文献

2
SOS - too many signals for systemic acquired resistance?
Trends Plant Sci. 2012 Sep;17(9):538-45. doi: 10.1016/j.tplants.2012.05.011. Epub 2012 Jun 29.
3
An abietane diterpenoid is a potent activator of systemic acquired resistance.
Plant J. 2012 Jul;71(1):161-72. doi: 10.1111/j.1365-313X.2012.04981.x. Epub 2012 Apr 30.
5
The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence.
Plant Cell. 2011 Nov;23(11):4124-45. doi: 10.1105/tpc.111.088443. Epub 2011 Nov 11.
7
Biosynthesis and defensive function of Nδ-acetylornithine, a jasmonate-induced Arabidopsis metabolite.
Plant Cell. 2011 Sep;23(9):3303-18. doi: 10.1105/tpc.111.088989. Epub 2011 Sep 13.
9
Molecular aspects of defence priming.
Trends Plant Sci. 2011 Oct;16(10):524-31. doi: 10.1016/j.tplants.2011.06.004. Epub 2011 Jul 21.
10
Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants.
Nat Genet. 2011 May;43(5):421-7. doi: 10.1038/ng.798. Epub 2011 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验