Suppr超能文献

隐孢子虫的致病性和毒力。

Cryptosporidium pathogenicity and virulence.

机构信息

Biomedical Research Centre, Norwich School of Medicine, University of East Anglia, Norwich, England, United Kingdom.

出版信息

Clin Microbiol Rev. 2013 Jan;26(1):115-34. doi: 10.1128/CMR.00076-12.

Abstract

Cryptosporidium is a protozoan parasite of medical and veterinary importance that causes gastroenteritis in a variety of vertebrate hosts. Several studies have reported different degrees of pathogenicity and virulence among Cryptosporidium species and isolates of the same species as well as evidence of variation in host susceptibility to infection. The identification and validation of Cryptosporidium virulence factors have been hindered by the renowned difficulties pertaining to the in vitro culture and genetic manipulation of this parasite. Nevertheless, substantial progress has been made in identifying putative virulence factors for Cryptosporidium. This progress has been accelerated since the publication of the Cryptosporidium parvum and C. hominis genomes, with the characterization of over 25 putative virulence factors identified by using a variety of immunological and molecular techniques and which are proposed to be involved in aspects of host-pathogen interactions from adhesion and locomotion to invasion and proliferation. Progress has also been made in the contribution of host factors that are associated with variations in both the severity and risk of infection. Here we provide a review comprised of the current state of knowledge on Cryptosporidium infectivity, pathogenesis, and transmissibility in light of our contemporary understanding of microbial virulence.

摘要

隐孢子虫是一种医学和兽医重要的原生动物寄生虫,可引起各种脊椎动物宿主的胃肠炎。有几项研究报告了不同程度的致病性和毒力在隐孢子虫种和同种分离株之间,以及宿主对感染易感性的变异的证据。隐孢子虫毒力因子的鉴定和验证受到该寄生虫体外培养和遗传操作的公认困难的阻碍。然而,在鉴定隐孢子虫的潜在毒力因子方面已经取得了实质性进展。自发表了微小隐孢子虫和人隐孢子虫基因组以来,这一进展得到了加速,使用各种免疫学和分子技术鉴定了 25 种以上的潜在毒力因子,这些因子被认为涉及宿主-病原体相互作用的各个方面,从粘附和运动到入侵和增殖。宿主因子在感染的严重程度和风险的变化方面也取得了进展。在这里,我们根据我们对微生物毒力的当代理解,提供了一份关于隐孢子虫感染性、发病机制和传染性的综述。

相似文献

1
Cryptosporidium pathogenicity and virulence.
Clin Microbiol Rev. 2013 Jan;26(1):115-34. doi: 10.1128/CMR.00076-12.
3
Cryptosporidium virulence determinants--are we there yet?
Int J Parasitol. 2002 May;32(5):517-25. doi: 10.1016/s0020-7519(01)00356-3.
5
Molecular epidemiology of Cryptosporidium in humans and cattle in The Netherlands.
Int J Parasitol. 2008 Jun;38(7):809-17. doi: 10.1016/j.ijpara.2007.10.014. Epub 2007 Nov 4.
6
Molecular basis of Cryptosporidium-host cell interactions: recent advances and future prospects.
Future Microbiol. 2006 Aug;1(2):201-8. doi: 10.2217/17460913.1.2.201.
7
Cryptosporidium dose response studies: variation between isolates.
Risk Anal. 2002 Feb;22(1):175-83. doi: 10.1111/0272-4332.00014.
8
Cryptosporidium hominis n. sp. (Apicomplexa: Cryptosporidiidae) from Homo sapiens.
J Eukaryot Microbiol. 2002 Nov-Dec;49(6):433-40. doi: 10.1111/j.1550-7408.2002.tb00224.x.
9
Molecular characterization of Cryptosporidium isolates from humans and animals in Iran.
Appl Environ Microbiol. 2007 Feb;73(3):1033-5. doi: 10.1128/AEM.00964-06. Epub 2006 Dec 1.
10
Health sequelae of human cryptosporidiosis in industrialised countries: a systematic review.
Parasit Vectors. 2020 Sep 4;13(1):443. doi: 10.1186/s13071-020-04308-7.

引用本文的文献

1
exports a mucin glycoprotein into the microvilli of intestinal epithelium.
Virulence. 2025 Dec;16(1):2553780. doi: 10.1080/21505594.2025.2553780. Epub 2025 Sep 2.
2
Comparison of four diagnostic techniques for detection in Qatar.
Qatar Med J. 2025 Aug 20;2025(3):78. doi: 10.5339/qmj.2025.78. eCollection 2025.
3
Anti-Cryptosporidium efficacy of BKI-1708, an inhibitor of Cryptosporidium calcium-dependent protein kinase 1.
PLoS Negl Trop Dis. 2025 Jul 30;19(7):e0013263. doi: 10.1371/journal.pntd.0013263. eCollection 2025 Jul.
4
STAT1-IFITM3 promotes autophagy in epithelial cells to control infection.
Life Sci Alliance. 2025 Jul 18;8(9). doi: 10.26508/lsa.202503200. Print 2025 Sep.
5
Molecular Detection of Different Species of in Snakes from Surinam and Indonesia.
Animals (Basel). 2025 May 26;15(11):1556. doi: 10.3390/ani15111556.
7
Genetic crosses reveal genomic loci responsible for virulence in infection.
bioRxiv. 2025 May 21:2025.05.20.655157. doi: 10.1101/2025.05.20.655157.
8
Identifying outbreak risk factors through case-controls comparisons.
Commun Med (Lond). 2025 May 30;5(1):210. doi: 10.1038/s43856-025-00916-5.

本文引用的文献

1
A new heterogeneous family of telomerically encoded Cryptosporidium proteins.
Evol Appl. 2013 Feb;6(2):207-17. doi: 10.1111/j.1752-4571.2012.00277.x. Epub 2012 Jun 14.
2
Sink or swim: lipid rafts in parasite pathogenesis.
Trends Parasitol. 2012 Oct;28(10):417-26. doi: 10.1016/j.pt.2012.07.002. Epub 2012 Aug 18.
3
Assessment of polymorphic genetic markers for multi-locus typing of Cryptosporidium parvum and Cryptosporidium hominis.
Exp Parasitol. 2012 Oct;132(2):200-15. doi: 10.1016/j.exppara.2012.06.016. Epub 2012 Jul 7.
4
Membrane traffic and synaptic cross-talk during host cell entry by Trypanosoma cruzi.
Cell Microbiol. 2012 Sep;14(9):1345-53. doi: 10.1111/j.1462-5822.2012.01818.x. Epub 2012 Jul 4.
5
Comparative genome analysis of two Cryptosporidium parvum isolates with different host range.
Infect Genet Evol. 2012 Aug;12(6):1213-21. doi: 10.1016/j.meegid.2012.03.027. Epub 2012 Apr 12.
6
Extended outbreak of cryptosporidiosis in a pediatric hospital, China.
Emerg Infect Dis. 2012 Feb;18(2):312-4. doi: 10.3201/eid1802.110666.
7
The Cryptosporidium parvum kinome.
BMC Genomics. 2011 Sep 30;12:478. doi: 10.1186/1471-2164-12-478.
8
Comparison of diagnostic sensitivity and specificity of seven Cryptosporidium assays used in the UK.
J Med Microbiol. 2011 Nov;60(Pt 11):1598-1604. doi: 10.1099/jmm.0.034181-0. Epub 2011 Jul 14.
10
Genomics and population biology of Cryptosporidium species.
Parasite Immunol. 2012 Feb-Mar;34(2-3):61-71. doi: 10.1111/j.1365-3024.2011.01301.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验