Suppr超能文献

透明质酸合酶 1(HAS1)比透明质酸合酶 2(HAS2)和透明质酸合酶 3(HAS3)需要更高的细胞 UDP-GlcNAc 浓度。

Hyaluronan synthase 1 (HAS1) requires higher cellular UDP-GlcNAc concentration than HAS2 and HAS3.

机构信息

Institute of Biomedicine and the Biocenter Kuopio, University of Eastern Finland, FIN-70211 Kuopio, Finland.

出版信息

J Biol Chem. 2013 Feb 22;288(8):5973-83. doi: 10.1074/jbc.M112.443879. Epub 2013 Jan 9.

Abstract

Mammals have three homologous genes encoding proteins with hyaluronan synthase activity (Has1-3), all producing an identical polymer from UDP-N-acetylglucosamine and UDP-glucuronic acid. To compare the properties of these isoenzymes, COS-1 cells, with minor endogenous hyaluronan synthesis, were transfected with human Has1-3 isoenzymes. HAS1 was almost unable to secrete hyaluronan or form a hyaluronan coat, in contrast to HAS2 and HAS3. This failure of HAS1 to synthesize hyaluronan was compensated by increasing the cellular content of UDP-N-acetyl glucosamine by ∼10-fold with 1 mm glucosamine in the growth medium. Hyaluronan synthesis driven by HAS2 was less affected by glucosamine addition, and HAS3 was not affected at all. Glucose-free medium, leading to depletion of the UDP-sugars, markedly reduced hyaluronan synthesis by all HAS isoenzymes while raising its concentration from 5 to 25 mm had a moderate stimulatory effect. The results indicate that HAS1 is almost inactive in cells with low UDP-sugar supply, HAS2 activity increases with UDP-sugars, and HAS3 produces hyaluronan at high speed even with minimum substrate content. Transfected Has2 and particularly Has3 consumed enough UDP-sugars to reduce their content in COS-1 cells. Comparison of different human cell types revealed ∼50-fold differences in the content of UDP-N-acetylhexosamines and UDP-glucuronic acid, correlating with the expression level of Has1, suggesting cellular coordination between Has1 expression and the content of UDP-sugars.

摘要

哺乳动物有三个编码具有透明质酸合酶活性的蛋白质的同源基因(Has1-3),它们都能从 UDP-N-乙酰葡萄糖胺和 UDP-葡萄糖醛酸产生相同的聚合物。为了比较这些同工酶的性质,用 COS-1 细胞转染人 Has1-3 同工酶,该细胞内源透明质酸合成较少。与 HAS2 和 HAS3 相反,HAS1 几乎无法分泌透明质酸或形成透明质酸涂层。这种 HAS1 不能合成透明质酸的情况可以通过在生长培养基中添加 1 mM 葡萄糖胺将细胞内 UDP-N-乙酰葡萄糖胺的含量增加约 10 倍来补偿。由 HAS2 驱动的透明质酸合成受葡萄糖胺添加的影响较小,而 HAS3 则根本不受影响。无葡萄糖培养基会导致 UDP-糖的消耗,从而显著降低所有 HAS 同工酶的透明质酸合成,而将其浓度从 5 增加到 25 mM 则会产生适度的刺激作用。结果表明,HAS1 在 UDP-糖供应低的细胞中几乎不活跃,HAS2 活性随 UDP-糖增加而增加,而 HAS3 即使在最低底物含量下也能高速产生透明质酸。转染的 Has2 特别是 Has3 消耗了足够的 UDP-糖,导致 COS-1 细胞中 UDP-糖的含量降低。不同人类细胞类型的比较显示 UDP-N-乙酰己糖胺和 UDP-葡萄糖醛酸的含量差异约为 50 倍,与 Has1 的表达水平相关,表明 Has1 表达与 UDP-糖含量之间存在细胞协调。

相似文献

1
Hyaluronan synthase 1 (HAS1) requires higher cellular UDP-GlcNAc concentration than HAS2 and HAS3.
J Biol Chem. 2013 Feb 22;288(8):5973-83. doi: 10.1074/jbc.M112.443879. Epub 2013 Jan 9.
5
Hyaluronan synthase 1 (HAS1) produces a cytokine-and glucose-inducible, CD44-dependent cell surface coat.
Exp Cell Res. 2014 Jan 1;320(1):153-63. doi: 10.1016/j.yexcr.2013.09.021. Epub 2013 Oct 4.
6
Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties.
J Biol Chem. 1999 Aug 27;274(35):25085-92. doi: 10.1074/jbc.274.35.25085.
9
Mannose inhibits hyaluronan synthesis by down-regulation of the cellular pool of UDP-N-acetylhexosamines.
J Biol Chem. 2008 Mar 21;283(12):7666-73. doi: 10.1074/jbc.M706001200. Epub 2008 Jan 16.
10
Human Keratinocytes Respond to Extracellular UTP by Induction of Hyaluronan Synthase 2 Expression and Increased Hyaluronan Synthesis.
J Biol Chem. 2017 Mar 24;292(12):4861-4872. doi: 10.1074/jbc.M116.760322. Epub 2017 Feb 10.

引用本文的文献

3
The roles of hyaluronan in kidney development, physiology and disease.
Nat Rev Nephrol. 2024 Dec;20(12):822-832. doi: 10.1038/s41581-024-00883-5. Epub 2024 Aug 27.
4
Inverse-Vaccines for Rheumatoid Arthritis Re-establish Metabolic and Immunological Homeostasis in Joint Tissues.
Adv Healthc Mater. 2025 Feb;14(5):e2303995. doi: 10.1002/adhm.202303995. Epub 2024 Mar 19.
5
Glycocalyx-Sodium Interaction in Vascular Endothelium.
Nutrients. 2023 Jun 25;15(13):2873. doi: 10.3390/nu15132873.
6
The role of hyaluronan in renal cell carcinoma.
Front Immunol. 2023 Mar 2;14:1127828. doi: 10.3389/fimmu.2023.1127828. eCollection 2023.
7
'Two-faces' of hyaluronan, a dynamic barometer of disease progression in tumor microenvironment.
Discov Oncol. 2023 Jan 25;14(1):11. doi: 10.1007/s12672-023-00618-1.
8
Convergent Approaches to Delineate the Metabolic Regulation of Tumor Invasion by Hyaluronic Acid Biosynthesis.
Adv Healthc Mater. 2023 Jun;12(14):e2202224. doi: 10.1002/adhm.202202224. Epub 2022 Dec 21.
9
O-GlcNAcylation in Renal (Patho)Physiology.
Int J Mol Sci. 2022 Sep 24;23(19):11260. doi: 10.3390/ijms231911260.
10
Mechanisms of coordinating hyaluronan and glycosaminoglycan production by nucleotide sugars.
Am J Physiol Cell Physiol. 2022 Jun 1;322(6):C1201-C1213. doi: 10.1152/ajpcell.00130.2022. Epub 2022 Apr 20.

本文引用的文献

2
The hyaluronan synthase catalyzes the synthesis and membrane translocation of hyaluronan.
J Mol Biol. 2012 Apr 20;418(1-2):21-31. doi: 10.1016/j.jmb.2012.01.053. Epub 2012 Feb 13.
5
Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease.
Annu Rev Biochem. 2011;80:825-58. doi: 10.1146/annurev-biochem-060608-102511.
6
Enzymatic depletion of tumor hyaluronan induces antitumor responses in preclinical animal models.
Mol Cancer Ther. 2010 Nov;9(11):3052-64. doi: 10.1158/1535-7163.MCT-10-0470. Epub 2010 Oct 26.
7
Methyl-beta-cyclodextrin suppresses hyaluronan synthesis by down-regulation of hyaluronan synthase 2 through inhibition of Akt.
J Biol Chem. 2010 Jul 23;285(30):22901-10. doi: 10.1074/jbc.M109.088435. Epub 2010 May 25.
9
Modulation of hyaluronan synthase activity in cellular membrane fractions.
J Biol Chem. 2009 Oct 30;284(44):30684-94. doi: 10.1074/jbc.M109.040386. Epub 2009 Sep 8.
10
Understanding the Warburg effect: the metabolic requirements of cell proliferation.
Science. 2009 May 22;324(5930):1029-33. doi: 10.1126/science.1160809.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验