Suppr超能文献

小鼠模型中的基因组反应与人类炎症性疾病的反应相差很大。

Genomic responses in mouse models poorly mimic human inflammatory diseases.

机构信息

Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94305, USA.

出版信息

Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3507-12. doi: 10.1073/pnas.1222878110. Epub 2013 Feb 11.

Abstract

A cornerstone of modern biomedical research is the use of mouse models to explore basic pathophysiological mechanisms, evaluate new therapeutic approaches, and make go or no-go decisions to carry new drug candidates forward into clinical trials. Systematic studies evaluating how well murine models mimic human inflammatory diseases are nonexistent. Here, we show that, although acute inflammatory stresses from different etiologies result in highly similar genomic responses in humans, the responses in corresponding mouse models correlate poorly with the human conditions and also, one another. Among genes changed significantly in humans, the murine orthologs are close to random in matching their human counterparts (e.g., R(2) between 0.0 and 0.1). In addition to improvements in the current animal model systems, our study supports higher priority for translational medical research to focus on the more complex human conditions rather than relying on mouse models to study human inflammatory diseases.

摘要

现代生物医学研究的基石之一是使用小鼠模型来探索基本的病理生理机制,评估新的治疗方法,并做出前进或停止的决策,将新的候选药物推进临床试验。目前还没有系统地研究评估小鼠模型在多大程度上模拟人类炎症性疾病。在这里,我们表明,尽管不同病因引起的急性炎症应激在人类中导致高度相似的基因组反应,但相应的小鼠模型与人类疾病的相关性以及彼此之间的相关性较差。在人类中显著变化的基因中,与人类对应的小鼠同源物几乎随机匹配(例如,R(2) 在 0.0 到 0.1 之间)。除了改进当前的动物模型系统外,我们的研究还支持将转化医学研究的重点放在更复杂的人类疾病上,而不是依赖小鼠模型来研究人类炎症性疾病。

相似文献

1
Genomic responses in mouse models poorly mimic human inflammatory diseases.
Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3507-12. doi: 10.1073/pnas.1222878110. Epub 2013 Feb 11.
3
KERIS: kaleidoscope of gene responses to inflammation between species.
Nucleic Acids Res. 2017 Jan 4;45(D1):D908-D914. doi: 10.1093/nar/gkw974. Epub 2016 Oct 26.
4
Genomic responses in mouse models greatly mimic human inflammatory diseases.
Proc Natl Acad Sci U S A. 2015 Jan 27;112(4):1167-72. doi: 10.1073/pnas.1401965111. Epub 2014 Aug 4.
5
The acute inflammatory response in diverse shock states.
Shock. 2005 Jul;24(1):74-84. doi: 10.1097/01.shk.0000168526.97716.f3.
6
Functional genomics and gene expression profiling in sepsis: beyond class prediction.
Clin Infect Dis. 2005 Nov 15;41 Suppl 7:S427-35. doi: 10.1086/431993.
7
The Cutaneous Inflammatory Response to Thermal Burn Injury in a Murine Model.
Int J Mol Sci. 2019 Jan 28;20(3):538. doi: 10.3390/ijms20030538.
9
Computational identification of transcriptional regulators in human endotoxemia.
PLoS One. 2011;6(5):e18889. doi: 10.1371/journal.pone.0018889. Epub 2011 May 27.

引用本文的文献

1
Prioritizing FDA approved therapeutics for treating sepsis phenotypes: A network modeling approach based on neutrophil proteomics.
Front Immunol. 2025 Aug 14;16:1646141. doi: 10.3389/fimmu.2025.1646141. eCollection 2025.
2
Preclinical models in the study of lymph node metastasis.
J Zhejiang Univ Sci B. 2025 Jun 24;26(8):740-762. doi: 10.1631/jzus.B2400052.
3
Considering local immunity for innovative immunomodulatory approaches: pulmonary sepsis as a use case.
Front Immunol. 2025 Aug 7;16:1627313. doi: 10.3389/fimmu.2025.1627313. eCollection 2025.
5
Research trends and topics on sepsis immunosuppression: a bibliometric and visual analysis of global research from 2004 to 2024.
Front Med (Lausanne). 2025 Aug 4;12:1615753. doi: 10.3389/fmed.2025.1615753. eCollection 2025.
8
Multi-organ pathology in a small porcine model of cytokine storm syndrome characteristics.
Front Immunol. 2025 Jul 23;16:1618665. doi: 10.3389/fimmu.2025.1618665. eCollection 2025.
9
A promising vaccine adjuvant candidate to overcome infection based on innate immunity.
Clin Exp Vaccine Res. 2025 Jul;14(3):189-202. doi: 10.7774/cevr.2025.14.e27. Epub 2025 Jun 13.
10
The obesity paradox in murine sepsis models: a systematic review and meta-analysis.
Anaesthesiol Intensive Ther. 2025 Jul 25;57(1):182-194. doi: 10.5114/ait/207612.

本文引用的文献

1
Animal models: Not close enough.
Nature. 2012 Apr 12;484(7393):S9. doi: 10.1038/nature11102.
3
Drug for severe sepsis is withdrawn from market, fails to reduce mortality.
JAMA. 2011 Dec 14;306(22):2439-40. doi: 10.1001/jama.2011.1755.
4
A genomic storm in critically injured humans.
J Exp Med. 2011 Dec 19;208(13):2581-90. doi: 10.1084/jem.20111354. Epub 2011 Nov 21.
5
Current insights in sepsis: from pathogenesis to new treatment targets.
Curr Opin Crit Care. 2011 Oct;17(5):480-6. doi: 10.1097/MCC.0b013e32834a4aeb.
6
Discovery and preclinical validation of drug indications using compendia of public gene expression data.
Sci Transl Med. 2011 Aug 17;3(96):96ra77. doi: 10.1126/scitranslmed.3001318.
7
Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease.
Sci Transl Med. 2011 Aug 17;3(96):96ra76. doi: 10.1126/scitranslmed.3002648.
8
A map of human genome variation from population-scale sequencing.
Nature. 2010 Oct 28;467(7319):1061-73. doi: 10.1038/nature09534.
9
Immunotherapy for sepsis--a new approach against an ancient foe.
N Engl J Med. 2010 Jul 1;363(1):87-9. doi: 10.1056/NEJMcibr1004371.
10
Reconstituting organ-level lung functions on a chip.
Science. 2010 Jun 25;328(5986):1662-8. doi: 10.1126/science.1188302.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验