Suppr超能文献

木质素降解及其潜在工业应用的见解。

Insights into lignin degradation and its potential industrial applications.

作者信息

Abdel-Hamid Ahmed M, Solbiati Jose O, Cann Isaac K O

机构信息

Energy Biosciences Institute, University of Illinois, IL, USA; Institute for Genomic Biology, University of Illinois, IL, USA.

出版信息

Adv Appl Microbiol. 2013;82:1-28. doi: 10.1016/B978-0-12-407679-2.00001-6.

Abstract

Lignocellulose is an abundant biomass that provides an alternative source for the production of renewable fuels and chemicals. The depolymerization of the carbohydrate polymers in lignocellulosic biomass is hindered by lignin, which is recalcitrant to chemical and biological degradation due to its complex chemical structure and linkage heterogeneity. The role of fungi in delignification due to the production of extracellular oxidative enzymes has been studied more extensively than that of bacteria. The two major groups of enzymes that are involved in lignin degradation are heme peroxidases and laccases. Lignin-degrading peroxidases include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). LiP, MnP, and VP are class II extracellular fungal peroxidases that belong to the plant and microbial peroxidases superfamily. LiPs are strong oxidants with high-redox potential that oxidize the major non-phenolic structures of lignin. MnP is an Mn-dependent enzyme that catalyzes the oxidation of various phenolic substrates but is not capable of oxidizing the more recalcitrant non-phenolic lignin. VP enzymes combine the catalytic activities of both MnP and LiP and are able to oxidize Mn(2+) like MnP, and non-phenolic compounds like LiP. DyPs occur in both fungi and bacteria and are members of a new superfamily of heme peroxidases called DyPs. DyP enzymes oxidize high-redox potential anthraquinone dyes and were recently reported to oxidize lignin model compounds. The second major group of lignin-degrading enzymes, laccases, are found in plants, fungi, and bacteria and belong to the multicopper oxidase superfamily. They catalyze a one-electron oxidation with the concomitant four-electron reduction of molecular oxygen to water. Fungal laccases can oxidize phenolic lignin model compounds and have higher redox potential than bacterial laccases. In the presence of redox mediators, fungal laccases can oxidize non-phenolic lignin model compounds. In addition to the peroxidases and laccases, fungi produce other accessory oxidases such as aryl-alcohol oxidase and the glyoxal oxidase that generate the hydrogen peroxide required by the peroxidases. Lignin-degrading enzymes have attracted the attention for their valuable biotechnological applications especially in the pretreatment of recalcitrant lignocellulosic biomass for biofuel production. The use of lignin-degrading enzymes has been studied in various applications such as paper industry, textile industry, wastewater treatment and the degradation of herbicides.

摘要

木质纤维素是一种丰富的生物质,为可再生燃料和化学品的生产提供了替代来源。木质纤维素生物质中碳水化合物聚合物的解聚受到木质素的阻碍,由于其复杂的化学结构和连接异质性,木质素对化学和生物降解具有抗性。与细菌相比,真菌因产生细胞外氧化酶在脱木质素中的作用得到了更广泛的研究。参与木质素降解的两大类酶是血红素过氧化物酶和漆酶。木质素降解过氧化物酶包括木质素过氧化物酶(LiP)、锰过氧化物酶(MnP)、多功能过氧化物酶(VP)和染料脱色过氧化物酶(DyP)。LiP、MnP和VP是II类细胞外真菌过氧化物酶,属于植物和微生物过氧化物酶超家族。LiP是具有高氧化还原电位的强氧化剂,可氧化木质素的主要非酚类结构。MnP是一种依赖锰的酶,催化各种酚类底物的氧化,但不能氧化更难降解的非酚类木质素。VP酶结合了MnP和LiP的催化活性,能够像MnP一样氧化Mn(2+),像LiP一样氧化非酚类化合物。DyP存在于真菌和细菌中,是一种名为DyP的血红素过氧化物酶新超家族的成员。DyP酶可氧化高氧化还原电位的蒽醌染料,最近有报道称其可氧化木质素模型化合物。另一大类木质素降解酶漆酶存在于植物、真菌和细菌中,属于多铜氧化酶超家族。它们催化单电子氧化,同时将分子氧四电子还原为水。真菌漆酶可氧化酚类木质素模型化合物,且比细菌漆酶具有更高的氧化还原电位。在氧化还原介质存在的情况下,真菌漆酶可氧化非酚类木质素模型化合物。除了过氧化物酶和漆酶外,真菌还产生其他辅助氧化酶,如芳基醇氧化酶和乙二醛氧化酶,它们产生过氧化物酶所需的过氧化氢。木质素降解酶因其有价值的生物技术应用而受到关注,特别是在预处理难降解的木质纤维素生物质以生产生物燃料方面。木质素降解酶已在造纸工业、纺织工业、废水处理和除草剂降解等各种应用中得到研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验