Suppr超能文献

疟原虫时间响应的改变决定了对青蒿素的不同敏感性。

Altered temporal response of malaria parasites determines differential sensitivity to artemisinin.

机构信息

Department of Biochemistry and Molecular Biology and Australian Research Council Centre of Excellence for Coherent X-Ray Science, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.

出版信息

Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5157-62. doi: 10.1073/pnas.1217452110. Epub 2013 Feb 19.

Abstract

Reports of emerging resistance to first-line artemisinin antimalarials make it critical to define resistance mechanisms and identify in vitro correlates of resistance. Here we combine unique in vitro experimental and analytical approaches to mimic in vivo drug exposure in an effort to provide insight into mechanisms of drug resistance. Tightly synchronized parasites exposed to short drug pulses exhibit large stage-dependent differences in their drug response that correlate with hemoglobin digestion throughout most of the asexual cycle. As a result, ring-stage parasites can exhibit >100-fold lower sensitivity to short drug pulses than trophozoites, although we identify a subpopulation of rings (2-4 h postinvasion) that exhibits hypersensitivity. We find that laboratory strains that show little differences in drug sensitivity in standard in vitro assays exhibit substantial (>95-fold) difference in sensitivity when exposed to short drug pulses. These stage- and strain-dependent differences in drug sensitivity reflect differential response lag times with rings exhibiting lag times of up to 4 h. A simple model that assumes that the parasite experiences a saturable effective drug dose describes the complex dependence of parasite viability on both drug concentration and exposure time and is used to demonstrate that small changes in the parasite's drug response profile can dramatically alter the sensitivity to artemisinins. This work demonstrates that effective resistance can arise from the interplay between the short in vivo half-life of the drug and the stage-specific lag time and provides the framework for understanding the mechanisms of drug action and parasite resistance.

摘要

报告指出,一线青蒿素抗疟药物出现耐药性,因此必须明确耐药机制,并确定体外耐药相关因素。本研究结合独特的体外实验和分析方法,模拟体内药物暴露情况,深入了解耐药机制。紧密同步的寄生虫经短暂药物脉冲处理后,药物反应表现出明显的时相依赖性差异,与整个无性生殖周期内的血红蛋白消化过程相关。结果表明,与滋养体相比,环状体对短暂药物脉冲的敏感性低 100 倍以上,尽管我们发现入侵后 2-4 小时的亚群环状体表现出超敏性。我们发现,在标准体外检测中药物敏感性差异较小的实验室株在短暂药物脉冲处理时显示出显著 (>95 倍)的敏感性差异。这些时相和株间药物敏感性的差异反映了不同的反应滞后时间,环状体的滞后时间可达 4 小时。一个假设寄生虫经历饱和有效药物剂量的简单模型描述了寄生虫存活率对药物浓度和暴露时间的复杂依赖性,并用于证明寄生虫药物反应谱的微小变化可以显著改变对青蒿素类药物的敏感性。本研究证明,有效耐药性可能是药物体内半衰期短和时相特异性滞后时间相互作用的结果,为理解药物作用机制和寄生虫耐药性提供了框架。

相似文献

1
Altered temporal response of malaria parasites determines differential sensitivity to artemisinin.
Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5157-62. doi: 10.1073/pnas.1217452110. Epub 2013 Feb 19.
3
Intrahost modeling of artemisinin resistance in Plasmodium falciparum.
Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):397-402. doi: 10.1073/pnas.1006113108. Epub 2010 Dec 20.
5
K13 Mutations Differentially Impact Ozonide Susceptibility and Parasite Fitness .
mBio. 2017 Apr 11;8(2):e00172-17. doi: 10.1128/mBio.00172-17.
6
Timing is everything for artemisinin action.
Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):4866-7. doi: 10.1073/pnas.1301607110. Epub 2013 Mar 14.
7
A Dynamic Stress Model Explains the Delayed Drug Effect in Artemisinin Treatment of Plasmodium falciparum.
Antimicrob Agents Chemother. 2017 Nov 22;61(12). doi: 10.1128/AAC.00618-17. Print 2017 Dec.
9
Optimal assay design for determining the in vitro sensitivity of ring stage Plasmodium falciparum to artemisinins.
Int J Parasitol. 2014 Oct 15;44(12):893-9. doi: 10.1016/j.ijpara.2014.07.008. Epub 2014 Aug 23.
10
Artemisinin-resistant Plasmodium falciparum parasites exhibit altered patterns of development in infected erythrocytes.
Antimicrob Agents Chemother. 2015;59(6):3156-67. doi: 10.1128/AAC.00197-15. Epub 2015 Mar 16.

引用本文的文献

1
The hematin-dihydroartemisinin adduct mobilizes a potent mechanism to suppress β-hematin crystallization.
J Biol Chem. 2025 Jul;301(7):110310. doi: 10.1016/j.jbc.2025.110310. Epub 2025 May 29.
2
Synthesis and SAR Studies of Acyl-Thiourea Platinum(II) Complexes Yield Analogs with Dual-Stage Antiplasmodium Activity.
ACS Med Chem Lett. 2025 Feb 17;16(3):428-435. doi: 10.1021/acsmedchemlett.4c00545. eCollection 2025 Mar 13.
3
Isolation and characterization of blood-stage persisters by improved selection protocols using dihydroartemisinin alone.
Antimicrob Agents Chemother. 2025 Mar 5;69(3):e0005324. doi: 10.1128/aac.00053-24. Epub 2025 Feb 10.
4
Artemisinin pressure in field isolates can select highly resistant parasites with unconventional phenotype and no K13 mutation.
Antimicrob Agents Chemother. 2025 Mar 5;69(3):e0154124. doi: 10.1128/aac.01541-24. Epub 2025 Feb 4.
6
A potent and selective reaction hijacking inhibitor of Plasmodium falciparum tyrosine tRNA synthetase exhibits single dose oral efficacy in vivo.
PLoS Pathog. 2024 Dec 9;20(12):e1012429. doi: 10.1371/journal.ppat.1012429. eCollection 2024 Dec.
7
Enhanced cell stress response and protein degradation capacity underlie artemisinin resistance in .
mSphere. 2024 Nov 21;9(11):e0037124. doi: 10.1128/msphere.00371-24. Epub 2024 Oct 22.
8
Artemisinin-resistant malaria.
Clin Microbiol Rev. 2024 Dec 10;37(4):e0010924. doi: 10.1128/cmr.00109-24. Epub 2024 Oct 15.
10
A fast-acting inhibitor of blood-stage with mechanism distinct from artemisinin and chloroquine.
bioRxiv. 2024 Aug 12:2024.08.12.607553. doi: 10.1101/2024.08.12.607553.

本文引用的文献

1
Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia.
Antimicrob Agents Chemother. 2013 Feb;57(2):914-23. doi: 10.1128/AAC.01868-12. Epub 2012 Dec 3.
2
Mechanism-based model of parasite growth and dihydroartemisinin pharmacodynamics in murine malaria.
Antimicrob Agents Chemother. 2013 Jan;57(1):508-16. doi: 10.1128/AAC.01463-12. Epub 2012 Nov 12.
3
Mechanisms of in vitro resistance to dihydroartemisinin in Plasmodium falciparum.
Mol Microbiol. 2012 Oct;86(1):111-28. doi: 10.1111/j.1365-2958.2012.08180.x. Epub 2012 Aug 6.
4
In vitro-reduced susceptibility to artemether in P. falciparum and its association with polymorphisms on transporter genes.
J Infect Dis. 2012 Aug 1;206(3):324-32. doi: 10.1093/infdis/jis359. Epub 2012 May 21.
5
A major genome region underlying artemisinin resistance in malaria.
Science. 2012 Apr 6;336(6077):79-82. doi: 10.1126/science.1215966.
6
Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study.
Lancet. 2012 May 26;379(9830):1960-6. doi: 10.1016/S0140-6736(12)60484-X. Epub 2012 Apr 5.
7
Phenotypic and genotypic analysis of in vitro-selected artemisinin-resistant progeny of Plasmodium falciparum.
Antimicrob Agents Chemother. 2012 Jan;56(1):302-14. doi: 10.1128/AAC.05540-11. Epub 2011 Nov 14.
8
Recent clinical and molecular insights into emerging artemisinin resistance in Plasmodium falciparum.
Curr Opin Infect Dis. 2011 Dec;24(6):570-7. doi: 10.1097/QCO.0b013e32834cd3ed.
10
Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion.
Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11405-10. doi: 10.1073/pnas.1104063108. Epub 2011 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验