Suppr超能文献

基于决策树模型预测合成肽的抗菌活性。

Prediction of antimicrobial activity of synthetic peptides by a decision tree model.

机构信息

Laboratório de Expressão Gênica, Universidade Nilton Lins, Manaus, Amazonas, Brazil.

出版信息

Appl Environ Microbiol. 2013 May;79(10):3156-9. doi: 10.1128/AEM.02804-12. Epub 2013 Mar 1.

Abstract

Antimicrobial resistance is a persistent problem in the public health sphere. However, recent attempts to find effective substitutes to combat infections have been directed at identifying natural antimicrobial peptides in order to circumvent resistance to commercial antibiotics. This study describes the development of synthetic peptides with antimicrobial activity, created in silico by site-directed mutation modeling using wild-type peptides as scaffolds for these mutations. Fragments of antimicrobial peptides were used for modeling with molecular modeling computational tools. To analyze these peptides, a decision tree model, which indicated the action range of peptides on the types of microorganisms on which they can exercise biological activity, was created. The decision tree model was processed using physicochemistry properties from known antimicrobial peptides available at the Antimicrobial Peptide Database (APD). The two most promising peptides were synthesized, and antimicrobial assays showed inhibitory activity against Gram-positive and Gram-negative bacteria. Colossomin C and colossomin D were the most inhibitory peptides at 5 μg/ml against Staphylococcus aureus and Escherichia coli. The methods described in this work and the results obtained are useful for the identification and development of new compounds with antimicrobial activity through the use of computational tools.

摘要

抗菌耐药性是公共卫生领域长期存在的问题。然而,为了规避对商业抗生素的耐药性,最近寻找有效替代品来对抗感染的尝试已转向鉴定天然抗菌肽。本研究描述了使用野生型肽作为这些突变的支架,通过定点突变建模在计算机上设计具有抗菌活性的合成肽的方法。使用分子建模计算工具对抗菌肽片段进行建模。为了分析这些肽,创建了决策树模型,该模型指示了肽对其可以发挥生物活性的微生物类型的作用范围。使用抗菌肽数据库 (APD) 中可用的已知抗菌肽的物理化学特性处理决策树模型。合成了两种最有前途的肽,抗菌测定表明它们对革兰氏阳性和革兰氏阴性细菌具有抑制活性。Colossomin C 和 colossomin D 是对金黄色葡萄球菌和大肠杆菌最具抑制作用的肽,在 5μg/ml 时的抑制活性最高。本工作中描述的方法和获得的结果可用于通过使用计算工具鉴定和开发具有抗菌活性的新化合物。

相似文献

1
Prediction of antimicrobial activity of synthetic peptides by a decision tree model.
Appl Environ Microbiol. 2013 May;79(10):3156-9. doi: 10.1128/AEM.02804-12. Epub 2013 Mar 1.
2
Predicting antimicrobial peptides from eukaryotic genomes: in silico strategies to develop antibiotics.
Peptides. 2012 Oct;37(2):301-8. doi: 10.1016/j.peptides.2012.07.021. Epub 2012 Aug 3.
4
Antimicrobial Peptides of Meat Origin - An In silico and In vitro Analysis.
Protein Pept Lett. 2017;24(2):165-173. doi: 10.2174/0929866523666161220113230.
9
In silico design of polycationic antimicrobial peptides active against Pseudomonas aeruginosa and Staphylococcus aureus.
Antonie Van Leeuwenhoek. 2018 Oct;111(10):1871-1882. doi: 10.1007/s10482-018-1080-2. Epub 2018 Apr 6.

引用本文的文献

1
Roles of Different β-Defensins in the Human Reproductive System: A Review Study.
Am J Mens Health. 2023 May-Jun;17(3):15579883231182673. doi: 10.1177/15579883231182673.
4
De Novo Design and In Vitro Testing of Antimicrobial Peptides against Gram-Negative Bacteria.
Pharmaceuticals (Basel). 2019 Jun 3;12(2):82. doi: 10.3390/ph12020082.
5
Encodings and models for antimicrobial peptide classification for multi-resistant pathogens.
BioData Min. 2019 Mar 4;12:7. doi: 10.1186/s13040-019-0196-x. eCollection 2019.
6
An Optimized Framework for Cancer Prediction Using Immunosignature.
J Med Signals Sens. 2018 Jul-Sep;8(3):161-169. doi: 10.4103/jmss.JMSS_2_18.
7
Multi-label Learning for Predicting the Activities of Antimicrobial Peptides.
Sci Rep. 2017 May 19;7(1):2202. doi: 10.1038/s41598-017-01986-9.
8
Imbalanced multi-label learning for identifying antimicrobial peptides and their functional types.
Bioinformatics. 2016 Dec 15;32(24):3745-3752. doi: 10.1093/bioinformatics/btw560. Epub 2016 Aug 26.
9
High Emergence of ESBL-Producing E. coli Cystitis: Time to Get Smarter in Cyprus.
Front Microbiol. 2016 Jan 13;6:1446. doi: 10.3389/fmicb.2015.01446. eCollection 2015.
10
Microbial bioinformatics for food safety and production.
Brief Bioinform. 2016 Mar;17(2):283-92. doi: 10.1093/bib/bbv034. Epub 2015 Jun 16.

本文引用的文献

1
APD2: the updated antimicrobial peptide database and its application in peptide design.
Nucleic Acids Res. 2009 Jan;37(Database issue):D933-7. doi: 10.1093/nar/gkn823. Epub 2008 Oct 28.
2
What are decision trees?
Nat Biotechnol. 2008 Sep;26(9):1011-3. doi: 10.1038/nbt0908-1011.
3
Analysis and prediction of antibacterial peptides.
BMC Bioinformatics. 2007 Jul 23;8:263. doi: 10.1186/1471-2105-8-263.
4
A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs.
Curr Eye Res. 2005 Jul;30(7):505-15. doi: 10.1080/02713680590968637.
5
De novo generation of cationic antimicrobial peptides: influence of length and tryptophan substitution on antimicrobial activity.
Antimicrob Agents Chemother. 2005 Jan;49(1):316-22. doi: 10.1128/AAC.49.1.316-322.2005.
6
Lead optimization of antifungal peptides with 3D NMR structures analysis.
Protein Sci. 2004 Mar;13(3):703-13. doi: 10.1110/ps.03404404.
7
Novel antimicrobial peptides derived from flatfish genes.
Antimicrob Agents Chemother. 2003 Aug;47(8):2464-70. doi: 10.1128/AAC.47.8.2464-2470.2003.
8
Mode of action of membrane active antimicrobial peptides.
Biopolymers. 2002;66(4):236-48. doi: 10.1002/bip.10260.
9
The role of antimicrobial peptides in animal defenses.
Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8856-61. doi: 10.1073/pnas.97.16.8856.
10
Properties of cytotoxic peptide-formed ion channels.
Am J Physiol Cell Physiol. 2000 Jun;278(6):C1063-87. doi: 10.1152/ajpcell.2000.278.6.C1063.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验