Suppr超能文献

饮食诱导的秀丽隐杆线虫的发育加速与 TOR 和胰岛素无关。

Diet-induced developmental acceleration independent of TOR and insulin in C. elegans.

机构信息

Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.

出版信息

Cell. 2013 Mar 28;153(1):240-52. doi: 10.1016/j.cell.2013.02.049.

Abstract

Dietary composition has major effects on physiology. Here, we show that developmental rate, reproduction, and lifespan are altered in C. elegans fed Comamonas DA1877 relative to those fed a standard E. coli OP50 diet. We identify a set of genes that change in expression in response to this diet and use the promoter of one of these (acdh-1) as a dietary sensor. Remarkably, the effects on transcription and development occur even when Comamonas DA1877 is diluted with another diet, suggesting that Comamonas DA1877 generates a signal that is sensed by the nematode. Surprisingly, the developmental effect is independent from TOR and insulin signaling. Rather, Comamonas DA1877 affects cyclic gene expression during molting, likely through the nuclear hormone receptor NHR-23. Altogether, our findings indicate that different bacteria elicit various responses via distinct mechanisms, which has implications for diseases such as obesity and the interactions between the human microbiome and intestinal cells.

摘要

饮食组成对生理有重大影响。在这里,我们发现与喂食标准大肠杆菌 OP50 饮食的线虫相比,喂食 Comamonas DA1877 的线虫的发育速度、繁殖和寿命发生了改变。我们鉴定出一组响应这种饮食而改变表达的基因,并使用其中一个基因(acdh-1)的启动子作为饮食传感器。值得注意的是,即使将 Comamonas DA1877 与另一种饮食混合,对转录和发育的影响仍然存在,这表明 Comamonas DA1877 产生了一种被线虫感知的信号。令人惊讶的是,这种发育效应与 TOR 和胰岛素信号无关。相反,Comamonas DA1877 通过核激素受体 NHR-23 影响蜕皮期间的循环基因表达。总之,我们的研究结果表明,不同的细菌通过不同的机制引发不同的反应,这对肥胖等疾病以及人类微生物组和肠道细胞之间的相互作用具有重要意义。

相似文献

1
Diet-induced developmental acceleration independent of TOR and insulin in C. elegans.
Cell. 2013 Mar 28;153(1):240-52. doi: 10.1016/j.cell.2013.02.049.
2
Integration of metabolic and gene regulatory networks modulates the C. elegans dietary response.
Cell. 2013 Mar 28;153(1):253-66. doi: 10.1016/j.cell.2013.02.050.
3
The longevity effect of dietary restriction in Caenorhabditis elegans.
Exp Gerontol. 2006 Oct;41(10):1026-31. doi: 10.1016/j.exger.2006.05.007. Epub 2006 Jun 19.
5
Deletion of the intestinal peptide transporter affects insulin and TOR signaling in Caenorhabditis elegans.
J Biol Chem. 2004 Aug 27;279(35):36739-45. doi: 10.1074/jbc.M403415200. Epub 2004 May 19.
6
Genetics: influence of TOR kinase on lifespan in C. elegans.
Nature. 2003 Dec 11;426(6967):620. doi: 10.1038/426620a.
7
drr-2 encodes an eIF4H that acts downstream of TOR in diet-restriction-induced longevity of C. elegans.
Aging Cell. 2010 Aug;9(4):545-57. doi: 10.1111/j.1474-9726.2010.00580.x. Epub 2010 Apr 29.
9
Autophagy and insulin/TOR signaling in Caenorhabditis elegans pcm-1 protein repair mutants.
Autophagy. 2007 Jul-Aug;3(4):357-9. doi: 10.4161/auto.4143. Epub 2007 Jul 15.
10
The somatic reproductive tissues of C. elegans promote longevity through steroid hormone signaling.
PLoS Biol. 2010 Aug 31;8(8):e1000468. doi: 10.1371/journal.pbio.1000468.

引用本文的文献

1
High-glucose diets differentially modulate phosphatidylcholine metabolism and fecundity in .
Front Cell Dev Biol. 2025 Aug 29;13:1622695. doi: 10.3389/fcell.2025.1622695. eCollection 2025.
6
Interspecies relationships of natural amoebae and bacteria with create environments propitious for multigenerational diapause.
mSystems. 2025 Apr 22;10(4):e0156624. doi: 10.1128/msystems.01566-24. Epub 2025 Mar 20.
7
Systems-level design principles of metabolic rewiring in an animal.
Nature. 2025 Apr;640(8057):203-211. doi: 10.1038/s41586-025-08636-5. Epub 2025 Feb 26.
8
Microbiota-derived β carotene is required for strobilation of by impacting host retinoic acid signaling.
iScience. 2025 Jan 2;28(2):111729. doi: 10.1016/j.isci.2024.111729. eCollection 2025 Feb 21.
9
A wrinkle in timers: evolutionary rewiring of conserved biological timekeepers.
Trends Biochem Sci. 2025 Apr;50(4):344-355. doi: 10.1016/j.tibs.2025.01.006. Epub 2025 Feb 13.
10
A ubiquinone precursor analogue does not clearly increase the growth rate of .
MicroPubl Biol. 2024 Dec 5;2024. doi: 10.17912/micropub.biology.001235. eCollection 2024.

本文引用的文献

1
Integration of metabolic and gene regulatory networks modulates the C. elegans dietary response.
Cell. 2013 Mar 28;153(1):253-66. doi: 10.1016/j.cell.2013.02.050.
2
C. elegans feeding.
WormBook. 2012 May 21:1-23. doi: 10.1895/wormbook.1.150.1.
3
mTOR signaling in growth control and disease.
Cell. 2012 Apr 13;149(2):274-93. doi: 10.1016/j.cell.2012.03.017.
4
S6K links cell fate, cell cycle and nutrient response in C. elegans germline stem/progenitor cells.
Development. 2012 Mar;139(5):859-70. doi: 10.1242/dev.074047. Epub 2012 Jan 25.
5
Yeast one-hybrid assays for gene-centered human gene regulatory network mapping.
Nat Methods. 2011 Oct 30;8(12):1050-2. doi: 10.1038/nmeth.1764.
6
Hormone signaling and phenotypic plasticity in nematode development and evolution.
Curr Biol. 2011 Sep 27;21(18):R758-66. doi: 10.1016/j.cub.2011.06.034.
7
NHR-23 dependent collagen and hedgehog-related genes required for molting.
Biochem Biophys Res Commun. 2011 Oct 7;413(4):515-20. doi: 10.1016/j.bbrc.2011.08.124. Epub 2011 Sep 2.
8
Nuclear Receptors: Small Molecule Sensors that Coordinate Growth, Metabolism and Reproduction.
Subcell Biochem. 2011;52:123-53. doi: 10.1007/978-90-481-9069-0_6.
9
Food sensitizes C. elegans avoidance behaviours through acute dopamine signalling.
EMBO J. 2011 Mar 16;30(6):1110-22. doi: 10.1038/emboj.2011.22. Epub 2011 Feb 8.
10
Genetic and molecular analysis of nematode-microbe interactions.
Cell Microbiol. 2011 Apr;13(4):497-507. doi: 10.1111/j.1462-5822.2011.01570.x. Epub 2011 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验