Suppr超能文献

脯氨酸利用 A 蛋白的脯氨酸脱氢酶结构域的β3-α3 环参与变构调节与膜的结合

Involvement of the β3-α3 loop of the proline dehydrogenase domain in allosteric regulation of membrane association of proline utilization A.

机构信息

Department of Biochemistry, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.

出版信息

Biochemistry. 2013 Jul 2;52(26):4482-91. doi: 10.1021/bi400396g. Epub 2013 Jun 19.

Abstract

Proline utilization A (PutA) from Escherichia coli is a membrane-associated trifunctional flavoenzyme that catalyzes the oxidation of proline to glutamate and moonlights as a transcriptional regulator. As a regulatory protein, PutA represses transcription of the put regulon, which contains the genes encoding PutA and the proline transporter PutP. The binding of proline to the proline dehydrogenase active site and the subsequent reduction of the flavin induce high affinity membrane association of PutA and relieve repression of the put regulon, thereby causing PutA to switch from its regulatory to its enzymatic role. Here, we present evidence suggesting that residues of the β3-α3 loop of the proline dehydrogenase domain (βα)8 barrel are involved in proline-mediated allosteric regulation of PutA-membrane binding. Mutation of the conserved residues Asp370 and Glu372 in the β3-α3 loop abrogates the ability of proline to induce functional membrane association. Both in vitro lipid/membrane binding assays and in vivo cell-based assays demonstrate that mutagenesis of Asp370 (D370N/A) or Glu372 (E372A) dramatically impedes PutA functional switching. The crystal structures of the proline dehydrogenase domain mutants PutA86-630D370N and PutA86-630D370A complexed with the proline analogue l-tetrahydro-2-furoic acid show that the mutations cause only minor perturbations to the active site but no major structural changes, suggesting that the lack of proline response is not due to a failure of the mutated active sites to correctly bind the substrate. Rather, these results suggest that the β3-α3 loop may be involved in transmitting the status of the proline dehydrogenase active site and flavin redox state to the distal membrane association domain.

摘要

大肠杆菌中的脯氨酸利用 A(PutA)是一种膜相关的三功能黄素酶,可催化脯氨酸氧化为谷氨酸,并兼职作为转录调节剂。作为调节蛋白,PutA 抑制包含 PutA 和脯氨酸转运蛋白 PutP 的 Put 调节子的转录。脯氨酸与脯氨酸脱氢酶活性位点的结合以及随后黄素的还原诱导 PutA 与膜的高亲和力结合,并解除对 Put 调节子的抑制,从而使 PutA 从其调节作用转变为其酶作用。在这里,我们提供的证据表明,脯氨酸脱氢酶结构域(βα)8 桶的β3-α3 环中的残基参与了脯氨酸对 PutA-膜结合的变构调节。突变β3-α3 环中的保守残基天冬氨酸 370 和谷氨酸 372 会破坏脯氨酸诱导功能性膜结合的能力。体外脂质/膜结合测定和体内细胞测定均表明,天冬氨酸 370(D370N/A)或谷氨酸 372(E372A)的突变极大地阻碍了 PutA 的功能转换。脯氨酸脱氢酶结构域突变体 PutA86-630D370N 和 PutA86-630D370A 与脯氨酸类似物 l-四氢-2-呋喃酸复合物的晶体结构表明,突变仅导致活性位点的微小扰动,而没有结构的主要变化,这表明缺乏脯氨酸反应不是由于突变活性位点未能正确结合底物所致。相反,这些结果表明,β3-α3 环可能参与将脯氨酸脱氢酶活性位点和黄素氧化还原状态的状态传递到远端膜结合域。

相似文献

4
Flavin redox state triggers conformational changes in the PutA protein from Escherichia coli.
Biochemistry. 2003 May 13;42(18):5469-77. doi: 10.1021/bi0272196.
8
Structural basis of the transcriptional regulation of the proline utilization regulon by multifunctional PutA.
J Mol Biol. 2008 Aug 1;381(1):174-88. doi: 10.1016/j.jmb.2008.05.084. Epub 2008 Jun 7.
9
Discovery of the Membrane Binding Domain in Trifunctional Proline Utilization A.
Biochemistry. 2017 Nov 28;56(47):6292-6303. doi: 10.1021/acs.biochem.7b01008. Epub 2017 Nov 15.
10
Probing a hydrogen bond pair and the FAD redox properties in the proline dehydrogenase domain of Escherichia coli PutA.
Biochim Biophys Acta. 2004 Sep 1;1701(1-2):49-59. doi: 10.1016/j.bbapap.2004.06.001.

引用本文的文献

2
Structure-based engineering of minimal proline dehydrogenase domains for inhibitor discovery.
Protein Eng Des Sel. 2022 Feb 17;35. doi: 10.1093/protein/gzac016.
4
Redox Modulation of Oligomeric State in Proline Utilization A.
Biophys J. 2018 Jun 19;114(12):2833-2843. doi: 10.1016/j.bpj.2018.04.046.
5
The Proline Cycle As a Potential Cancer Therapy Target.
Biochemistry. 2018 Jun 26;57(25):3433-3444. doi: 10.1021/acs.biochem.8b00215. Epub 2018 Apr 23.
6
Role of Proline in Pathogen and Host Interactions.
Antioxid Redox Signal. 2019 Feb 1;30(4):683-709. doi: 10.1089/ars.2017.7335. Epub 2018 Feb 2.
7
Discovery of the Membrane Binding Domain in Trifunctional Proline Utilization A.
Biochemistry. 2017 Nov 28;56(47):6292-6303. doi: 10.1021/acs.biochem.7b01008. Epub 2017 Nov 15.
8
Structural Biology of Proline Catabolic Enzymes.
Antioxid Redox Signal. 2019 Feb 1;30(4):650-673. doi: 10.1089/ars.2017.7374. Epub 2017 Nov 13.
9
Structure, function, and mechanism of proline utilization A (PutA).
Arch Biochem Biophys. 2017 Oct 15;632:142-157. doi: 10.1016/j.abb.2017.07.005. Epub 2017 Jul 14.
10
Multiple functionalities of reduced flavin in the non-redox reaction catalyzed by UDP-galactopyranose mutase.
Arch Biochem Biophys. 2017 Oct 15;632:59-65. doi: 10.1016/j.abb.2017.06.015. Epub 2017 Jun 24.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Steady-state kinetic mechanism of the proline:ubiquinone oxidoreductase activity of proline utilization A (PutA) from Escherichia coli.
Arch Biochem Biophys. 2011 Dec 15;516(2):113-20. doi: 10.1016/j.abb.2011.10.011. Epub 2011 Oct 25.
5
Structural basis of the transcriptional regulation of the proline utilization regulon by multifunctional PutA.
J Mol Biol. 2008 Aug 1;381(1):174-88. doi: 10.1016/j.jmb.2008.05.084. Epub 2008 Jun 7.
6
Automated structure solution with the PHENIX suite.
Methods Mol Biol. 2008;426:419-35. doi: 10.1007/978-1-60327-058-8_28.
7
Structural biology of proline catabolism.
Amino Acids. 2008 Nov;35(4):719-30. doi: 10.1007/s00726-008-0062-5. Epub 2008 Mar 28.
8
Structure and kinetics of monofunctional proline dehydrogenase from Thermus thermophilus.
J Biol Chem. 2007 May 11;282(19):14316-27. doi: 10.1074/jbc.M700912200. Epub 2007 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验