Horobin R W, Rashid-Doubell F, Pediani J D, Milligan G
School of Life Sciences.
Biotech Histochem. 2013 Nov;88(8):440-60. doi: 10.3109/10520295.2013.780634. Epub 2013 Jun 13.
Small molecule fluorochromes (synonyms: biosensors, chemosensors, fluorescent probes, vital stains) are widely used to investigate the structure, composition, physicochemical properties and biological functions of living cells, tissues and organisms. Selective entry and accumulation within particular cells and cellular structures are key processes for achieving these diverse objectives. Despite the complexities, probes routinely are applied using standard protocols, often without experimenter awareness of what factors that control accumulation and localization. The mechanisms of many such selective accumulations, however, now are known. Moreover, the influence of physicochemical properties of probes on their uptake and localization often can be defined numerically, hence predicted, using quantitative structure activity relations (QSAR) models with its required numerical structure parameters (or "descriptors"). The state of the art of this approach is described. Available QSAR models are summarized for uptake into cells and localization in the cytosol, endoplasmic reticulum, generic biomembranes, Golgi apparatus, lipid droplets, lysosomes/endosomes, mitochondria, eukaryotic nuclei (histones and DNA), plasma membrane, and ribosomal RNA (cytoplasmic and nucleolar). Integration of such core models to both aid understanding and troubleshooting of current fluorescent probes and to assist the design of novel probes is outlined and illustrated using case examples. Limitations and generic problems arising with this approach and comments on application of such approaches to xenobiotics other than probes, e.g., drugs and herbicides, together with a brief note about an alternative approach to prediction, are given.
小分子荧光染料(同义词:生物传感器、化学传感器、荧光探针、活体染色剂)被广泛用于研究活细胞、组织和生物体的结构、组成、物理化学性质及生物学功能。在特定细胞和细胞结构内的选择性进入和积累是实现这些不同目标的关键过程。尽管存在复杂性,但探针通常按照标准方案应用,实验者往往并未意识到控制积累和定位的因素。然而,现在已知许多此类选择性积累的机制。此外,利用具有所需数值结构参数(或“描述符”)的定量构效关系(QSAR)模型,通常可以从数值上定义并预测探针的物理化学性质对其摄取和定位的影响。本文描述了这种方法的技术现状。总结了现有的QSAR模型,涉及细胞摄取以及在细胞质、内质网、一般生物膜、高尔基体、脂滴、溶酶体/内体、线粒体、真核细胞核(组蛋白和DNA)、质膜和核糖体RNA(细胞质和核仁)中的定位。概述并通过实例说明了将此类核心模型进行整合,以帮助理解和解决当前荧光探针的问题,并辅助新型探针的设计。给出了这种方法存在的局限性和常见问题,以及对此类方法应用于除探针之外的其他外源性物质(如药物和除草剂)的评论,还简要介绍了一种替代预测方法。