Suppr超能文献

在中空纤维感染模型中头孢他洛滨-他唑巴坦暴露与耐药性扩增的关系。

Relationship between ceftolozane-tazobactam exposure and drug resistance amplification in a hollow-fiber infection model.

机构信息

Institute for Clinical Pharmacodynamics, Latham, New York, USA.

出版信息

Antimicrob Agents Chemother. 2013 Sep;57(9):4134-8. doi: 10.1128/AAC.00461-13. Epub 2013 Jun 17.

Abstract

In an era of rapidly emerging antimicrobial-resistant bacteria, it is critical to understand the importance of the relationships among drug exposure, duration of therapy, and selection of drug resistance. Herein we describe the results of studies designed to determine the ceftolozane-tazobactam exposure necessary to prevent the amplification of drug-resistant bacterial subpopulations in a hollow-fiber infection model. The challenge isolate was a CTX-M-15-producing Escherichia coli isolate genetically engineered to transcribe a moderate level of blaCTX-M-15. This organism's blaCTX-M-15 transcription level was confirmed by relative quantitative reverse transcription-PCR (qRT-PCR), β-lactamase hydrolytic assays, and a ceftolozane MIC value of 16 mg/liter. In these studies, the experimental duration (10 days), ceftolozane-tazobactam dose ratio (2:1), and dosing interval (every 8 h) were selected to approximate those expected to be used clinically. The ceftolozane-tazobactam doses studied ranged from 125-62.5 to 1,500-750 mg. Negative- and positive-control arms included no treatment and piperacillin-tazobactam at 4.5 g every 6 h, respectively. An inverted-U-shaped function best described the relationship between bacterial drug resistance amplification and drug exposure. The least- and most-intensive ceftolozane-tazobactam dosing regimens, i.e., 125-62.5, 750-375, 1,000-500, and 1,500-750 mg, did not amplify drug resistance, while drug resistance amplification was observed with intermediate-intensity dosing regimens (250-125 and 500-250 mg). For the intermediate-intensity ceftolozane-tazobactam dosing regimens, the drug-resistant subpopulation became the dominant population by days 4 to 6. The more-intensive ceftolozane-tazobactam dosing regimens (750-375, 1,000-500, and 1,500-750 mg) not only prevented drug resistance amplification but also virtually sterilized the model system. These data support the selection of ceftolozane-tazobactam dosing regimens that minimize the potential for on-therapy drug resistance amplification.

摘要

在迅速出现抗微生物药物耐药性的时代,了解药物暴露、治疗持续时间和耐药性药物选择之间的关系至关重要。在此,我们描述了旨在确定头孢洛扎他唑巴坦暴露量以防止在中空纤维感染模型中扩增耐药细菌亚群的研究结果。挑战分离株是一种 CTX-M-15 产生的大肠杆菌分离株,经过基因工程改造以转录中等水平的 blaCTX-M-15。通过相对定量逆转录聚合酶链反应(qRT-PCR)、β-内酰胺酶水解测定和头孢洛扎他唑巴坦 MIC 值为 16mg/L 证实了该生物体 blaCTX-M-15 的转录水平。在这些研究中,实验持续时间(10 天)、头孢洛扎他唑巴坦剂量比(2:1)和给药间隔(每 8 小时)选择接近预期在临床上使用的时间。研究的头孢洛扎他唑巴坦剂量范围为 125-62.5 至 1500-750mg。阴性和阳性对照臂分别包括无治疗和哌拉西林他唑巴坦,剂量为每 6 小时 4.5g。细菌药物耐药性扩增与药物暴露之间的关系最好用倒 U 形函数来描述。最低和最高强度的头孢洛扎他唑巴坦给药方案,即 125-62.5、750-375、1000-500 和 1500-750mg,没有扩增耐药性,而中等强度的给药方案(250-125 和 500-250mg)观察到耐药性扩增。对于中等强度的头孢洛扎他唑巴坦给药方案,耐药亚群在第 4 至 6 天成为主要群体。更密集的头孢洛扎他唑巴坦给药方案(750-375、1000-500 和 1500-750mg)不仅防止了耐药性扩增,而且实际上使模型系统无菌。这些数据支持选择头孢洛扎他唑巴坦给药方案,最大限度地减少治疗期间药物耐药性扩增的可能性。

相似文献

1
Relationship between ceftolozane-tazobactam exposure and drug resistance amplification in a hollow-fiber infection model.
Antimicrob Agents Chemother. 2013 Sep;57(9):4134-8. doi: 10.1128/AAC.00461-13. Epub 2013 Jun 17.
2
Relationship between ceftolozane-tazobactam exposure and selection for Pseudomonas aeruginosa resistance in a hollow-fiber infection model.
Antimicrob Agents Chemother. 2014 Oct;58(10):6024-31. doi: 10.1128/AAC.02310-13. Epub 2014 Jul 28.
3
Pharmacological basis of β-lactamase inhibitor therapeutics: tazobactam in combination with Ceftolozane.
Antimicrob Agents Chemother. 2013 Dec;57(12):5924-30. doi: 10.1128/AAC.00656-13. Epub 2013 Sep 16.
4
Pharmacokinetics-Pharmacodynamics of Tazobactam in Combination with Piperacillin in an In Vitro Infection Model.
Antimicrob Agents Chemother. 2016 Mar 25;60(4):2075-80. doi: 10.1128/AAC.02747-15. Print 2016 Apr.
5
Pharmacokinetics-pharmacodynamics of tazobactam in combination with ceftolozane in an in vitro infection model.
Antimicrob Agents Chemother. 2013 Jun;57(6):2809-14. doi: 10.1128/AAC.02513-12. Epub 2013 Apr 29.
6
In vitro pharmacodynamic evaluation of ceftolozane/tazobactam against β-lactamase-producing Escherichia coli in a hollow-fibre infection model.
Int J Antimicrob Agents. 2017 Jan;49(1):25-30. doi: 10.1016/j.ijantimicag.2016.07.015. Epub 2016 Sep 1.
7
Comparison of the risk of acquiring in vitro resistance to doripenem and tazobactam/piperacillin by CTX-M-15-producing Escherichia coli.
J Infect Chemother. 2015 May;21(5):381-4. doi: 10.1016/j.jiac.2015.01.006. Epub 2015 Jan 23.
8
Pharmacodynamics of Ceftolozane plus Tazobactam Studied in an In Vitro Pharmacokinetic Model of Infection.
Antimicrob Agents Chemother. 2015 Nov 9;60(1):515-21. doi: 10.1128/AAC.00727-15. Print 2016 Jan.
10
Pharmacokinetics-Pharmacodynamics of Tazobactam in Combination with Cefepime in an Infection Model.
Antimicrob Agents Chemother. 2017 Nov 22;61(12). doi: 10.1128/AAC.01052-17. Print 2017 Dec.

引用本文的文献

1
Assessment of human exposures of cefepime-taniborbactam against cefepime-resistant Enterobacterales and in a 7-day hollow fiber infection model.
Antimicrob Agents Chemother. 2025 Sep 3;69(9):e0001725. doi: 10.1128/aac.00017-25. Epub 2025 Jul 31.
2
Dynamic PK/PD Infection Models for the Development and Optimisation of Antimicrobial Regimens: A Narrative Review.
Antibiotics (Basel). 2024 Dec 10;13(12):1201. doi: 10.3390/antibiotics13121201.
3
Characterization of resistance to ceftolozane-tazobactam due to and/or mutations observed during treatment using semi-mechanistic PKPD modeling.
Antimicrob Agents Chemother. 2023 Oct 18;67(10):e0048023. doi: 10.1128/aac.00480-23. Epub 2023 Sep 11.
4
Characterization of spectinamide 1599 efficacy against different mycobacterial phenotypes.
Tuberculosis (Edinb). 2023 May;140:102342. doi: 10.1016/j.tube.2023.102342. Epub 2023 Apr 20.
6
Gepotidacin Pharmacokinetics-Pharmacodynamics against Escherichia coli in the One-Compartment and Hollow-Fiber Infection Model Systems.
Antimicrob Agents Chemother. 2021 Nov 17;65(12):e0012221. doi: 10.1128/AAC.00122-21. Epub 2021 Sep 20.
7
New β-Lactam-β-Lactamase Inhibitor Combinations.
Clin Microbiol Rev. 2020 Nov 11;34(1). doi: 10.1128/CMR.00115-20. Print 2020 Dec 16.
10
Diagnostic and medical needs for therapeutic drug monitoring of antibiotics.
Eur J Clin Microbiol Infect Dis. 2020 May;39(5):791-797. doi: 10.1007/s10096-019-03769-8.

本文引用的文献

1
Pharmacokinetics-pharmacodynamics of tazobactam in combination with ceftolozane in an in vitro infection model.
Antimicrob Agents Chemother. 2013 Jun;57(6):2809-14. doi: 10.1128/AAC.02513-12. Epub 2013 Apr 29.
2
Intrapulmonary penetration of ceftolozane/tazobactam and piperacillin/tazobactam in healthy adult subjects.
J Antimicrob Chemother. 2012 Oct;67(10):2463-9. doi: 10.1093/jac/dks246. Epub 2012 Jul 6.
3
Pharmacokinetics and safety of intravenous ceftolozane-tazobactam in healthy adult subjects following single and multiple ascending doses.
Antimicrob Agents Chemother. 2012 Jun;56(6):3086-91. doi: 10.1128/AAC.06349-11. Epub 2012 Mar 26.
4
NIH-98-134: Contemporary Medicine as Presented by its Practitioners Themselves, Leipzig, 1923:217-250.
Nonlinearity Biol Toxicol Med. 2003 Jul;1(3):295-318. doi: 10.1080/15401420390249880.
5
Impact of resistance selection and mutant growth fitness on the relative efficacies of streptomycin and levofloxacin for plague therapy.
Antimicrob Agents Chemother. 2007 Aug;51(8):2661-7. doi: 10.1128/AAC.00073-07. Epub 2007 May 21.
7
Inhibition of the renal excretion of tazobactam by piperacillin.
J Antimicrob Chemother. 1994 Oct;34(4):555-64. doi: 10.1093/jac/34.4.555.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验