Institute for Clinical Pharmacodynamics, Latham, New York, USA.
Antimicrob Agents Chemother. 2013 Sep;57(9):4134-8. doi: 10.1128/AAC.00461-13. Epub 2013 Jun 17.
In an era of rapidly emerging antimicrobial-resistant bacteria, it is critical to understand the importance of the relationships among drug exposure, duration of therapy, and selection of drug resistance. Herein we describe the results of studies designed to determine the ceftolozane-tazobactam exposure necessary to prevent the amplification of drug-resistant bacterial subpopulations in a hollow-fiber infection model. The challenge isolate was a CTX-M-15-producing Escherichia coli isolate genetically engineered to transcribe a moderate level of blaCTX-M-15. This organism's blaCTX-M-15 transcription level was confirmed by relative quantitative reverse transcription-PCR (qRT-PCR), β-lactamase hydrolytic assays, and a ceftolozane MIC value of 16 mg/liter. In these studies, the experimental duration (10 days), ceftolozane-tazobactam dose ratio (2:1), and dosing interval (every 8 h) were selected to approximate those expected to be used clinically. The ceftolozane-tazobactam doses studied ranged from 125-62.5 to 1,500-750 mg. Negative- and positive-control arms included no treatment and piperacillin-tazobactam at 4.5 g every 6 h, respectively. An inverted-U-shaped function best described the relationship between bacterial drug resistance amplification and drug exposure. The least- and most-intensive ceftolozane-tazobactam dosing regimens, i.e., 125-62.5, 750-375, 1,000-500, and 1,500-750 mg, did not amplify drug resistance, while drug resistance amplification was observed with intermediate-intensity dosing regimens (250-125 and 500-250 mg). For the intermediate-intensity ceftolozane-tazobactam dosing regimens, the drug-resistant subpopulation became the dominant population by days 4 to 6. The more-intensive ceftolozane-tazobactam dosing regimens (750-375, 1,000-500, and 1,500-750 mg) not only prevented drug resistance amplification but also virtually sterilized the model system. These data support the selection of ceftolozane-tazobactam dosing regimens that minimize the potential for on-therapy drug resistance amplification.
在迅速出现抗微生物药物耐药性的时代,了解药物暴露、治疗持续时间和耐药性药物选择之间的关系至关重要。在此,我们描述了旨在确定头孢洛扎他唑巴坦暴露量以防止在中空纤维感染模型中扩增耐药细菌亚群的研究结果。挑战分离株是一种 CTX-M-15 产生的大肠杆菌分离株,经过基因工程改造以转录中等水平的 blaCTX-M-15。通过相对定量逆转录聚合酶链反应(qRT-PCR)、β-内酰胺酶水解测定和头孢洛扎他唑巴坦 MIC 值为 16mg/L 证实了该生物体 blaCTX-M-15 的转录水平。在这些研究中,实验持续时间(10 天)、头孢洛扎他唑巴坦剂量比(2:1)和给药间隔(每 8 小时)选择接近预期在临床上使用的时间。研究的头孢洛扎他唑巴坦剂量范围为 125-62.5 至 1500-750mg。阴性和阳性对照臂分别包括无治疗和哌拉西林他唑巴坦,剂量为每 6 小时 4.5g。细菌药物耐药性扩增与药物暴露之间的关系最好用倒 U 形函数来描述。最低和最高强度的头孢洛扎他唑巴坦给药方案,即 125-62.5、750-375、1000-500 和 1500-750mg,没有扩增耐药性,而中等强度的给药方案(250-125 和 500-250mg)观察到耐药性扩增。对于中等强度的头孢洛扎他唑巴坦给药方案,耐药亚群在第 4 至 6 天成为主要群体。更密集的头孢洛扎他唑巴坦给药方案(750-375、1000-500 和 1500-750mg)不仅防止了耐药性扩增,而且实际上使模型系统无菌。这些数据支持选择头孢洛扎他唑巴坦给药方案,最大限度地减少治疗期间药物耐药性扩增的可能性。