First Cardiovascular Division, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Kuei-Shan, Taoyuan, Taiwan.
Circ Arrhythm Electrophysiol. 2013 Aug;6(4):790-8. doi: 10.1161/CIRCEP.113.000338. Epub 2013 Jul 24.
Atrial fibrosis, a common feature of atrial fibrillation, is thought to originate from the differential response of atrium versus ventricle to pathological insult. However, detailed mechanisms underlying the regional differences remain unclear. The aim of this study was to investigate the related factor(s) in mediating atrial vulnerability to fibrotic processes.
We first compared the response of cultured atrial versus ventricular fibroblasts with transforming growth factor-β (TGF-β), a key mediator of myocardial fibrosis. Atrial fibroblasts showed a stronger response to TGF-β1 in producing extracellular matrix protein (collagen and fibronectin) than ventricular fibroblasts. Furthermore, TGF-β1 activated its downstream signaling (Smads) and induced pronounced oxidative stress, including up-regulation of nicotinamide adenine dinucleotide phosphate oxidase in atrial fibroblasts, and to a lesser extent in ventricular fibroblasts. Nicotinamide adenine dinucleotide phosphate oxidase inhibitors and small-interfering RNA for Nox4 eliminated TGF-β-induced difference between atrial and ventricular fibroblasts, suggesting the crucial role of Nox4 in mediating the atrial-ventricular discrepancy. Small-interfering RNA for Smad3 also suppressed the differential responsiveness of atrial versus ventricular fibroblasts to TGF-β1, including Nox4 activation, implicating a crosstalk between nicotinamide adenine dinucleotide phosphate oxidases and Smad. In vivo, the increased TGF-β1 responsiveness and Nox4 expression were documented in the atria of transgenic mice with cardiac overexpression of TGF-β1.
Atrial fibroblasts show greater fibrotic and oxidative responses to TGF-β1 than ventricular fibroblasts. Nox4-derived reactive oxygen species production mediates the susceptibility of atrial fibroblasts to TGF-β1 via activating TGF-β1/Smad signaling cascade, which provides a novel insight into the pathogenesis of atrial fibrosis.
心房纤维化是心房颤动的一个常见特征,据认为它起源于心房与心室对病理损伤的不同反应。然而,导致这种区域性差异的详细机制尚不清楚。本研究旨在探讨介导心房对纤维化过程易感性的相关因素。
我们首先比较了培养的心房和心室成纤维细胞对转化生长因子-β(TGF-β)的反应,TGF-β是心肌纤维化的关键介质。与心室成纤维细胞相比,心房成纤维细胞对 TGF-β1 产生细胞外基质蛋白(胶原和纤维连接蛋白)的反应更强。此外,TGF-β1 激活其下游信号(Smads)并诱导明显的氧化应激,包括在心房成纤维细胞中上调烟酰胺腺嘌呤二核苷酸磷酸氧化酶(Nox4),而在心室成纤维细胞中则较少。烟酰胺腺嘌呤二核苷酸磷酸氧化酶抑制剂和 Nox4 的小干扰 RNA 消除了 TGF-β1 诱导的心房与心室成纤维细胞之间的差异,表明 Nox4 在介导心房-心室差异方面起着关键作用。Smad3 的小干扰 RNA 也抑制了 TGF-β1 对心房与心室成纤维细胞的差异性反应,包括 Nox4 的激活,提示烟酰胺腺嘌呤二核苷酸磷酸氧化酶和 Smad 之间存在串扰。在体内,在心脏过表达 TGF-β1 的转基因小鼠的心房中,TGF-β1 反应性和 Nox4 表达增加。
与心室成纤维细胞相比,心房成纤维细胞对 TGF-β1 表现出更强的纤维化和氧化反应。Nox4 衍生的活性氧产生通过激活 TGF-β1/Smad 信号级联介导心房成纤维细胞对 TGF-β1 的易感性,这为心房纤维化的发病机制提供了新的见解。