Howard Hughes Medical Institute, Department of Pathology and Developmental Biology, Stanford University Medical School, Stanford, CA 94305, USA.
Curr Opin Genet Dev. 2013 Oct;23(5):591-8. doi: 10.1016/j.gde.2013.07.001.
The development of the vertebrate nervous system requires a switch of ATP-dependent chromatin remodeling mechanisms, which occurs by substituting subunits within these complexes near cell cycle exit. This switching involves a triple negative genetic circuitry in which REST represses miR-9 and miR-124, which in turn repress BAF53a, which in turn repress the homologous neuron-specific BAF53b. Recapitulation of this microRNA/chromatin switch in human fibroblasts converts them to neurons. The genes involved in this fate-determining chromatin switch play genetically dominant roles in several human neurologic diseases suggesting that they are rate-limiting for aspects of human neural development. We review how this switch in ATP-dependent chromatin complexes might interface with traditional ideas about neural determination and reprogramming.
脊椎动物神经系统的发育需要一种 ATP 依赖的染色质重塑机制的转换,这种转换发生在细胞周期退出时,通过在这些复合物内替换亚基来实现。这种转换涉及一个三重负遗传电路,其中 REST 抑制 miR-9 和 miR-124,反过来又抑制 BAF53a,进而抑制同源的神经元特异性 BAF53b。在人类成纤维细胞中重现这种 microRNA/染色质开关可将其转化为神经元。涉及这种决定命运的染色质开关的基因在几种人类神经疾病中具有遗传显性作用,表明它们是人类神经发育某些方面的限速因素。我们回顾了这种 ATP 依赖的染色质复合物的转换如何与关于神经决定和重编程的传统观念相联系。