Suppr超能文献

塑造生物活性分子的相互作用景观。

Shaping the interaction landscape of bioactive molecules.

机构信息

Swiss Institute of Bioinformatics (SIB), Quartier Sorge, Bâtiment Génopode, CH-1015 Lausanne, Switzerland, Ludwig Institute for Cancer Research and Pluridisciplinary Center for Clinical Oncology, Centre Hospitalier Universitaire Vaudois, CH-1015 Lausanne, Switzerland.

出版信息

Bioinformatics. 2013 Dec 1;29(23):3073-9. doi: 10.1093/bioinformatics/btt540. Epub 2013 Sep 17.

Abstract

MOTIVATION

Most bioactive molecules perform their action by interacting with proteins or other macromolecules. However, for a significant fraction of them, the primary target remains unknown. In addition, the majority of bioactive molecules have more than one target, many of which are poorly characterized. Computational predictions of bioactive molecule targets based on similarity with known ligands are powerful to narrow down the number of potential targets and to rationalize side effects of known molecules.

RESULTS

Using a reference set of 224 412 molecules active on 1700 human proteins, we show that accurate target prediction can be achieved by combining different measures of chemical similarity based on both chemical structure and molecular shape. Our results indicate that the combined approach is especially efficient when no ligand with the same scaffold or from the same chemical series has yet been discovered. We also observe that different combinations of similarity measures are optimal for different molecular properties, such as the number of heavy atoms. This further highlights the importance of considering different classes of similarity measures between new molecules and known ligands to accurately predict their targets.

摘要

动机

大多数生物活性分子通过与蛋白质或其他大分子相互作用来发挥作用。然而,对于其中很大一部分分子来说,其主要靶点仍然未知。此外,大多数生物活性分子具有多个靶点,其中许多靶点的特征描述较差。基于与已知配体的相似性对生物活性分子靶点进行计算预测,可以缩小潜在靶点的数量,并合理化已知分子的副作用。

结果

使用针对 1700 个人类蛋白质具有活性的 224412 种分子的参考集,我们表明通过结合基于化学结构和分子形状的不同化学相似性度量,可以实现准确的靶点预测。我们的结果表明,当尚未发现具有相同支架或来自同一化学系列的配体时,组合方法尤其有效。我们还观察到,不同的相似性度量组合对于不同的分子特性(如重原子数)是最佳的。这进一步强调了在新分子和已知配体之间考虑不同类别的相似性度量以准确预测其靶点的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验