Suppr超能文献

动态全身 PET 参数成像:I. 概念、采集方案优化和临床应用。

Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application.

机构信息

Division of Nuclear Medicine, Department of Radiology, Johns Hopkins University, Baltimore, MD, 21287, USA.

出版信息

Phys Med Biol. 2013 Oct 21;58(20):7391-418. doi: 10.1088/0031-9155/58/20/7391. Epub 2013 Sep 30.

Abstract

Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ~15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ~45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically acceptable sampling schedules examined. The framework was also applied to six FDG PET patient studies, demonstrating clinical feasibility. Both simulated and clinical results indicated enhanced contrast-to-noise ratios (CNRs) for Ki images in tumor regions with notable background FDG concentration, such as the liver, where SUV performed relatively poorly. Overall, the proposed framework enables enhanced quantification of physiological parameters across the whole body. In addition, the total acquisition length can be reduced from 45 to ~35 min and still achieve improved or equivalent CNR compared to SUV, provided the true Ki contrast is sufficiently high. In the follow-up companion paper, a set of advanced linear regression schemes is presented to particularly address the presence of noise, and attempt to achieve a better trade-off between the mean-squared error and the CNR metrics, resulting in enhanced task-based imaging.

摘要

静态全身 PET/CT 采用标准化摄取值(SUV),被认为是诊断和治疗反应监测多种肿瘤的标准临床方法。在研究环境中已经实施了涉及时间图像动态采集的替代 PET 方案,允许示踪剂动力学的定量,这是肿瘤特征和治疗反应监测的重要能力。尽管如此,动态方案仅限于单床位覆盖,将轴向视野限制在约 15-20 厘米,并且尚未转化为全身 PET 成像的常规临床环境,用于检查播散性疾病。在这里,我们通过在统一框架内提出临床可行的多床位动态 PET 采集方案和参数成像方法,追求向动态全身 PET 参数成像的转变。我们研究了解决以下挑战的解决方案:(i)长采集时间,(ii)每个床位的动态帧数少,以及(iii)血浆中动力学的非侵入性定量。在本研究中,提出了一种新的动态(4D)全身 PET 采集方案,总长度约为 45 分钟,由(i)初始 6 分钟动态 PET 扫描(24 帧)在心脏上进行,随后由(ii)多通道多床位 PET 扫描序列组成(六个通道×七个床位位置,每个扫描 45 秒)。采用标准 Patlak 线性图形分析建模,结合图像衍生的血浆输入函数测量。使用普通最小二乘 Patlak 估计作为基线回归方法,对个体体素基础上的示踪剂摄取率 Ki 和总血分布容积 V 的生理参数进行量化。使用广泛的发表的动力学 FDG 参数和 GATE 和 XCAT 平台进行了大量的蒙特卡罗模拟研究,以从十种不同的临床可接受的采样方案中优化采集方案。该框架还应用于六个 FDG PET 患者研究,证明了临床可行性。模拟和临床结果均表明,在肝脏等具有显著 FDG 浓度的背景下,Ki 图像的对比噪声比(CNR)增强,而 SUV 表现相对较差。总体而言,该框架可实现全身生理参数的增强定量。此外,只要真正的 Ki 对比度足够高,总采集长度可以从 45 分钟减少到约 35 分钟,并且仍然可以获得比 SUV 更好或等效的 CNR。在后续的配套论文中,提出了一组高级线性回归方案,特别针对噪声的存在,并试图在均方误差和 CNR 度量之间取得更好的折衷,从而实现基于任务的成像的增强。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验