Suppr超能文献

动态全身 PET 参数成像:II. 面向任务的统计估计。

Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation.

机构信息

Division of Nuclear Medicine, Department of Radiology, Johns Hopkins University, Baltimore, MD, 21287, USA.

出版信息

Phys Med Biol. 2013 Oct 21;58(20):7419-45. doi: 10.1088/0031-9155/58/20/7419. Epub 2013 Sep 30.

Abstract

In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15-20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study, was employed along with extensive Monte Carlo simulations and an initial clinical (18)F-deoxyglucose patient dataset to validate and demonstrate the potential of the proposed statistical estimation methods. Both simulated and clinical results suggest that hybrid regression in the context of whole-body Patlak Ki imaging considerably reduces MSE without compromising high CNR. Alternatively, for a given CNR, hybrid regression enables larger reductions than OLS in the number of dynamic frames per bed, allowing for even shorter acquisitions of ~30 min, thus further contributing to the clinical adoption of the proposed framework. Compared to the SUV approach, whole-body parametric imaging can provide better tumor quantification, and can act as a complement to SUV, for the task of tumor detection.

摘要

在肿瘤学领域,动态 PET 成像结合标准图形线性分析已被用于在体素水平上实现示踪剂动力学参数的定量估计,从而实现定量 PET 参数成像。然而,动态 PET 采集方案仅限于单床位的有限轴向视野(15-20cm),并且尚未转化为全身临床成像领域。相反,标准化摄取值(SUV)PET 成像被认为是临床肿瘤学中的常规方法,通常涉及多床位采集,但以静态方式进行,因此不允许动态跟踪示踪剂分布。在这里,我们通过在统一框架内呈现临床可行的多床位动态 PET 采集方案和参数成像方法,追求向动态全身 PET 参数成像的转变。在一项伴随研究中,我们提出了一种新颖的临床可行的动态(4D)多床位 PET 采集方案,以及使用 Patlak 普通最小二乘法(OLS)回归来估计示踪剂摄取率 Ki 和总血容量 V 的定量参数的全身 PET 参数成像概念。在本研究中,我们提出了一种先进的混合线性回归框架,由 Patlak 动力学体素相关性驱动,与 OLS 相比,在最终 Ki 参数图像中实现了更高的对比度噪声比(CNR)和均方误差(MSE)之间的折衷,从而实现了基于任务的性能优化。总的来说,无论观察者的任务是检测肿瘤还是定量评估治疗反应,所提出的统计估计框架都可以通过调整 Patlak 相关系数(WR)参考值来适应特定任务的性能标准。在前面的伴随研究中进行了优化的多床位动态采集方案,与广泛的蒙特卡罗模拟和初始临床(18)F-脱氧葡萄糖患者数据集一起使用,验证和展示了所提出的统计估计方法的潜力。模拟和临床结果均表明,全身 Patlak Ki 成像中的混合回归在不影响高 CNR 的情况下大大降低了 MSE。或者,对于给定的 CNR,混合回归可以比 OLS 减少每床位动态帧数,从而允许甚至更短的采集时间30min,从而进一步促进所提出框架的临床采用。与 SUV 方法相比,全身参数成像可以提供更好的肿瘤定量,并可以作为 SUV 的补充,用于肿瘤检测任务。

相似文献

1
Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation.
Phys Med Biol. 2013 Oct 21;58(20):7419-45. doi: 10.1088/0031-9155/58/20/7419. Epub 2013 Sep 30.
2
Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application.
Phys Med Biol. 2013 Oct 21;58(20):7391-418. doi: 10.1088/0031-9155/58/20/7391. Epub 2013 Sep 30.
3
Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation-maximization reconstruction.
Phys Med Biol. 2016 Aug 7;61(15):5456-85. doi: 10.1088/0031-9155/61/15/5456. Epub 2016 Jul 6.
4
Direct inference of Patlak parametric images in whole-body PET/CT imaging using convolutional neural networks.
Eur J Nucl Med Mol Imaging. 2022 Oct;49(12):4048-4063. doi: 10.1007/s00259-022-05867-w. Epub 2022 Jun 18.
5
Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET.
Phys Med Biol. 2015 Nov 21;60(22):8643-73. doi: 10.1088/0031-9155/60/22/8643. Epub 2015 Oct 28.
6
Generation of parametric K images for FDG PET using two 5-min scans.
Med Phys. 2021 Sep;48(9):5219-5231. doi: 10.1002/mp.15113. Epub 2021 Aug 13.
7
First results on kinetic modelling and parametric imaging of dynamic F-FDG datasets from a long axial FOV PET scanner in oncological patients.
Eur J Nucl Med Mol Imaging. 2022 May;49(6):1997-2009. doi: 10.1007/s00259-021-05623-6. Epub 2022 Jan 4.
10
Does whole-body Patlak F-FDG PET imaging improve lesion detectability in clinical oncology?
Eur Radiol. 2019 Sep;29(9):4812-4821. doi: 10.1007/s00330-018-5966-1. Epub 2019 Jan 28.

引用本文的文献

4
Realistic total-body J-PET geometry optimization: Monte Carlo study.
Med Phys. 2025 May;52(5):2961-2975. doi: 10.1002/mp.17627. Epub 2025 Jan 24.
5
Population-based input function (PBIF) applied to dynamic whole-body 68Ga-DOTATOC-PET/CT acquisition.
Front Nucl Med. 2022 Sep 21;2:941848. doi: 10.3389/fnume.2022.941848. eCollection 2022.
6
Application of Dynamic [F]FDG PET/CT Multiparametric Imaging Leads to an Improved Differentiation of Benign and Malignant Lung Lesions.
Mol Imaging Biol. 2024 Oct;26(5):790-801. doi: 10.1007/s11307-024-01942-w. Epub 2024 Aug 22.
7
Motion-correction strategies for enhancing whole-body PET imaging.
Front Nucl Med. 2024;4. doi: 10.3389/fnume.2024.1257880. Epub 2024 Feb 7.

本文引用的文献

1
Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application.
Phys Med Biol. 2013 Oct 21;58(20):7391-418. doi: 10.1088/0031-9155/58/20/7391. Epub 2013 Sep 30.
2
The quantification with FDG as seen by a physician.
Nucl Med Biol. 2013 Aug;40(6):720-30. doi: 10.1016/j.nucmedbio.2013.06.009.
3
STIR: software for tomographic image reconstruction release 2.
Phys Med Biol. 2012 Feb 21;57(4):867-83. doi: 10.1088/0031-9155/57/4/867. Epub 2012 Jan 31.
4
5
GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy.
Phys Med Biol. 2011 Feb 21;56(4):881-901. doi: 10.1088/0031-9155/56/4/001. Epub 2011 Jan 20.
6
Bias in iterative reconstruction of low-statistics PET data: benefits of a resolution model.
Phys Med Biol. 2011 Feb 21;56(4):931-49. doi: 10.1088/0031-9155/56/4/004. Epub 2011 Jan 20.
7
4D XCAT phantom for multimodality imaging research.
Med Phys. 2010 Sep;37(9):4902-15. doi: 10.1118/1.3480985.
8
A systematic review of the factors affecting accuracy of SUV measurements.
AJR Am J Roentgenol. 2010 Aug;195(2):310-20. doi: 10.2214/AJR.10.4923.
9
Direct 4D reconstruction of parametric images incorporating anato-functional joint entropy.
Phys Med Biol. 2010 Aug 7;55(15):4261-72. doi: 10.1088/0031-9155/55/15/005. Epub 2010 Jul 20.
10
Acceleration of the direct reconstruction of linear parametric images using nested algorithms.
Phys Med Biol. 2010 Mar 7;55(5):1505-17. doi: 10.1088/0031-9155/55/5/016. Epub 2010 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验