Suppr超能文献

非线性动力学支持视网膜目标跟踪电路中的线性群体编码。

Nonlinear dynamics support a linear population code in a retinal target-tracking circuit.

机构信息

Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, and Division of Biology, California Institute of Technology, Pasadena, California 91125.

出版信息

J Neurosci. 2013 Oct 23;33(43):16971-82. doi: 10.1523/JNEUROSCI.2257-13.2013.

Abstract

A basic task faced by the visual system of many organisms is to accurately track the position of moving prey. The retina is the first stage in the processing of such stimuli; the nature of the transformation here, from photons to spike trains, constrains not only the ultimate fidelity of the tracking signal but also the ease with which it can be extracted by other brain regions. Here we demonstrate that a population of fast-OFF ganglion cells in the salamander retina, whose dynamics are governed by a nonlinear circuit, serve to compute the future position of the target over hundreds of milliseconds. The extrapolated position of the target is not found by stimulus reconstruction but is instead computed by a weighted sum of ganglion cell outputs, the population vector average (PVA). The magnitude of PVA extrapolation varies systematically with target size, speed, and acceleration, such that large targets are tracked most accurately at high speeds, and small targets at low speeds, just as is seen in the motion of real prey. Tracking precision reaches the resolution of single photoreceptors, and the PVA algorithm performs more robustly than several alternative algorithms. If the salamander brain uses the fast-OFF cell circuit for target extrapolation as we suggest, the circuit dynamics should leave a microstructure on the behavior that may be measured in future experiments. Our analysis highlights the utility of simple computations that, while not globally optimal, are efficiently implemented and have close to optimal performance over a limited but ethologically relevant range of stimuli.

摘要

许多生物的视觉系统面临的一个基本任务是准确跟踪移动猎物的位置。视网膜是处理此类刺激的第一阶段;这里的从光子到尖峰序列的转换性质不仅限制了跟踪信号的最终保真度,还限制了其他大脑区域提取它的容易程度。在这里,我们证明了蝾螈视网膜中的一群快速 OFF 神经节细胞,其动力学由一个非线性电路控制,用于计算目标在数百毫秒内的未来位置。目标的外推位置不是通过刺激重建找到的,而是通过神经节细胞输出的加权和,即群体矢量平均值(PVA)计算得出的。PVA 外推的幅度与目标大小、速度和加速度系统地变化,使得大目标在高速下跟踪最准确,小目标在低速下跟踪最准确,就像真实猎物的运动一样。跟踪精度达到单个光感受器的分辨率,并且 PVA 算法比几种替代算法更稳健。如果如我们所建议的,蝾螈大脑将快速 OFF 细胞电路用于目标外推,那么电路动力学应该会在行为上留下微观结构,未来的实验可能会测量到这种结构。我们的分析强调了简单计算的实用性,这些计算虽然不是全局最优的,但在有限但与行为相关的刺激范围内,它们的实现效率高,性能接近最优。

相似文献

1
Nonlinear dynamics support a linear population code in a retinal target-tracking circuit.
J Neurosci. 2013 Oct 23;33(43):16971-82. doi: 10.1523/JNEUROSCI.2257-13.2013.
2
Decoding visual information from a population of retinal ganglion cells.
J Neurophysiol. 1997 Nov;78(5):2336-50. doi: 10.1152/jn.1997.78.5.2336.
3
Inferring hidden structure in multilayered neural circuits.
PLoS Comput Biol. 2018 Aug 23;14(8):e1006291. doi: 10.1371/journal.pcbi.1006291. eCollection 2018 Aug.
4
The neural circuit mechanisms underlying the retinal response to motion reversal.
J Neurosci. 2014 Nov 19;34(47):15557-75. doi: 10.1523/JNEUROSCI.1460-13.2014.
5
A single retinal circuit model for multiple computations.
Biol Cybern. 2018 Oct;112(5):427-444. doi: 10.1007/s00422-018-0767-9. Epub 2018 Jun 27.
6
The structure and precision of retinal spike trains.
Proc Natl Acad Sci U S A. 1997 May 13;94(10):5411-6. doi: 10.1073/pnas.94.10.5411.
7
Fidelity of the ensemble code for visual motion in primate retina.
J Neurophysiol. 2005 Jul;94(1):119-35. doi: 10.1152/jn.01175.2004. Epub 2004 Dec 29.
8
High Accuracy Decoding of Dynamical Motion from a Large Retinal Population.
PLoS Comput Biol. 2015 Jul 1;11(7):e1004304. doi: 10.1371/journal.pcbi.1004304. eCollection 2015 Jul.
9
Decorrelation and efficient coding by retinal ganglion cells.
Nat Neurosci. 2012 Mar 11;15(4):628-35. doi: 10.1038/nn.3064.

引用本文的文献

1
Filter-based models of suppression in retinal ganglion cells: Comparison and generalization across species and stimuli.
PLoS Comput Biol. 2025 May 2;21(5):e1013031. doi: 10.1371/journal.pcbi.1013031. eCollection 2025 May.
2
Phase advancing is a common property of multiple neuron classes in the mouse retina.
eNeuro. 2022 Aug 22;9(5). doi: 10.1523/ENEURO.0270-22.2022.
3
Predictive encoding of motion begins in the primate retina.
Nat Neurosci. 2021 Sep;24(9):1280-1291. doi: 10.1038/s41593-021-00899-1. Epub 2021 Aug 2.
4
What the salamander eye has been telling the vision scientist's brain.
Semin Cell Dev Biol. 2020 Oct;106:61-71. doi: 10.1016/j.semcdb.2020.04.010. Epub 2020 Apr 29.
5
The dynamic receptive fields of retinal ganglion cells.
Prog Retin Eye Res. 2018 Nov;67:102-117. doi: 10.1016/j.preteyeres.2018.06.003. Epub 2018 Jun 23.
6
Nonlinear decoding of a complex movie from the mammalian retina.
PLoS Comput Biol. 2018 May 10;14(5):e1006057. doi: 10.1371/journal.pcbi.1006057. eCollection 2018 May.
7
Learning to make external sensory stimulus predictions using internal correlations in populations of neurons.
Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):1105-1110. doi: 10.1073/pnas.1710779115. Epub 2018 Jan 18.
8
Multiplexed computations in retinal ganglion cells of a single type.
Nat Commun. 2017 Dec 6;8(1):1964. doi: 10.1038/s41467-017-02159-y.
10
Diversity in spatial scope of contrast adaptation among mouse retinal ganglion cells.
J Neurophysiol. 2017 Dec 1;118(6):3024-3043. doi: 10.1152/jn.00529.2017. Epub 2017 Sep 13.

本文引用的文献

1
Computing complex visual features with retinal spike times.
PLoS One. 2013;8(1):e53063. doi: 10.1371/journal.pone.0053063. Epub 2013 Jan 2.
2
The spatial structure of a nonlinear receptive field.
Nat Neurosci. 2012 Nov;15(11):1572-80. doi: 10.1038/nn.3225. Epub 2012 Sep 23.
4
Eye smarter than scientists believed: neural computations in circuits of the retina.
Neuron. 2010 Jan 28;65(2):150-64. doi: 10.1016/j.neuron.2009.12.009.
5
High-throughput ethomics in large groups of Drosophila.
Nat Methods. 2009 Jun;6(6):451-7. doi: 10.1038/nmeth.1328. Epub 2009 May 3.
6
Receptive fields in primate retina are coordinated to sample visual space more uniformly.
PLoS Biol. 2009 Apr 7;7(4):e1000063. doi: 10.1371/journal.pbio.1000063.
7
Spatio-temporal correlations and visual signalling in a complete neuronal population.
Nature. 2008 Aug 21;454(7207):995-9. doi: 10.1038/nature07140. Epub 2008 Jul 23.
8
Rapid neural coding in the retina with relative spike latencies.
Science. 2008 Feb 22;319(5866):1108-11. doi: 10.1126/science.1149639.
9
Identification and characterization of a Y-like primate retinal ganglion cell type.
J Neurosci. 2007 Oct 10;27(41):11019-27. doi: 10.1523/JNEUROSCI.2836-07.2007.
10
Synchronized firing among retinal ganglion cells signals motion reversal.
Neuron. 2007 Sep 20;55(6):958-69. doi: 10.1016/j.neuron.2007.07.042.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验