Suppr超能文献

染色质连接图谱揭示了动态的启动子-增强子长程关联。

Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations.

机构信息

Sequencing Technology Group, Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, California 94598, USA.

Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, UCSF, San Francisco, California 94158, USA.

出版信息

Nature. 2013 Dec 12;504(7479):306-310. doi: 10.1038/nature12716. Epub 2013 Nov 10.

Abstract

In multicellular organisms, transcription regulation is one of the central mechanisms modelling lineage differentiation and cell-fate determination. Transcription requires dynamic chromatin configurations between promoters and their corresponding distal regulatory elements. It is believed that their communication occurs within large discrete foci of aggregated RNA polymerases termed transcription factories in three-dimensional nuclear space. However, the dynamic nature of chromatin connectivity has not been characterized at the genome-wide level. Here, through a chromatin interaction analysis with paired-end tagging approach using an antibody that primarily recognizes the pre-initiation complexes of RNA polymerase II, we explore the transcriptional interactomes of three mouse cells of progressive lineage commitment, including pluripotent embryonic stem cells, neural stem cells and neurosphere stem/progenitor cells. Our global chromatin connectivity maps reveal approximately 40,000 long-range interactions, suggest precise enhancer-promoter associations and delineate cell-type-specific chromatin structures. Analysis of the complex regulatory repertoire shows that there are extensive colocalizations among promoters and distal-acting enhancers. Most of the enhancers associate with promoters located beyond their nearest active genes, indicating that the linear juxtaposition is not the only guiding principle driving enhancer target selection. Although promoter-enhancer interactions exhibit high cell-type specificity, promoters involved in interactions are found to be generally common and mostly active among different cells. Chromatin connectivity networks reveal that the pivotal genes of reprogramming functions are transcribed within physical proximity to each other in embryonic stem cells, linking chromatin architecture to coordinated gene expression. Our study sets the stage for the full-scale dissection of spatial and temporal genome structures and their roles in orchestrating development.

摘要

在多细胞生物中,转录调控是模拟谱系分化和细胞命运决定的核心机制之一。转录需要启动子与其相应的远端调控元件之间的动态染色质构型。人们认为,它们的通讯发生在三维核空间中聚合的 RNA 聚合酶形成的大离散焦点中,这些焦点被称为转录工厂。然而,染色质连接的动态性质尚未在全基因组水平上得到表征。在这里,我们通过使用主要识别 RNA 聚合酶 II 起始复合物的抗体进行的带有末端配对标签的染色质相互作用分析,探索了三种具有渐进谱系分化能力的小鼠细胞(包括多能胚胎干细胞、神经干细胞和神经球干细胞/祖细胞)的转录相互作用组。我们的全基因组染色质连接图谱揭示了大约 40000 个长程相互作用,提示精确的增强子-启动子关联,并描绘了细胞类型特异性的染色质结构。对复杂调控库的分析表明,启动子和远距离作用的增强子之间存在广泛的共定位。大多数增强子与位于其最近的活性基因之外的启动子相关联,这表明线性并列不是驱动增强子靶标选择的唯一指导原则。尽管启动子-增强子相互作用表现出高度的细胞类型特异性,但参与相互作用的启动子在不同细胞中通常是常见的并且大多是活跃的。染色质连接网络表明,重编程功能的关键基因在胚胎干细胞中彼此物理接近转录,将染色质结构与协调的基因表达联系起来。我们的研究为全面剖析空间和时间基因组结构及其在协调发育中的作用奠定了基础。

相似文献

1
Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations.
Nature. 2013 Dec 12;504(7479):306-310. doi: 10.1038/nature12716. Epub 2013 Nov 10.
2
Chromatin architecture reorganization during stem cell differentiation.
Nature. 2015 Feb 19;518(7539):331-6. doi: 10.1038/nature14222.
4
High resolution mapping of enhancer-promoter interactions.
PLoS One. 2015 May 13;10(5):e0122420. doi: 10.1371/journal.pone.0122420. eCollection 2015.
5
Long distance relationships: enhancer-promoter communication and dynamic gene transcription.
Biochim Biophys Acta. 2012 Nov-Dec;1819(11-12):1217-27. doi: 10.1016/j.bbagrm.2012.10.008. Epub 2012 Nov 1.
7
CTCF-binding element regulates ESC differentiation via orchestrating long-range chromatin interaction between enhancers and HoxA.
J Biol Chem. 2021 Jan-Jun;296:100413. doi: 10.1016/j.jbc.2021.100413. Epub 2021 Feb 11.
8
A unique chromatin signature uncovers early developmental enhancers in humans.
Nature. 2011 Feb 10;470(7333):279-83. doi: 10.1038/nature09692. Epub 2010 Dec 15.
9
Cell type- and transcription-independent spatial proximity between enhancers and promoters.
Mol Biol Cell. 2024 Jul 1;35(7):ar96. doi: 10.1091/mbc.E24-02-0082. Epub 2024 May 8.

引用本文的文献

1
EPI-DynFusion: enhancer-promoter interaction prediction model based on sequence features and dynamic fusion mechanisms.
Front Genet. 2025 Jul 23;16:1614222. doi: 10.3389/fgene.2025.1614222. eCollection 2025.
3
CGLoop: a neural network framework for chromatin loop prediction.
BMC Genomics. 2025 Apr 5;26(1):342. doi: 10.1186/s12864-025-11531-y.
4
Three-dimensional regulatory hubs support oncogenic programs in glioblastoma.
Mol Cell. 2025 Apr 3;85(7):1330-1348.e6. doi: 10.1016/j.molcel.2025.03.007. Epub 2025 Mar 26.
5
Three-dimensional regulatory hubs support oncogenic programs in glioblastoma.
bioRxiv. 2024 Dec 20:2024.12.20.629544. doi: 10.1101/2024.12.20.629544.
7
A Sox2 enhancer cluster regulates region-specific neural fates from mouse embryonic stem cells.
G3 (Bethesda). 2025 Apr 17;15(4). doi: 10.1093/g3journal/jkaf012.
8
Uncovering the whole genome silencers of human cells via Ss-STARR-seq.
Nat Commun. 2025 Jan 16;16(1):723. doi: 10.1038/s41467-025-55852-8.

本文引用的文献

1
Circuitry and dynamics of human transcription factor regulatory networks.
Cell. 2012 Sep 14;150(6):1274-86. doi: 10.1016/j.cell.2012.04.040. Epub 2012 Sep 5.
2
A map of the cis-regulatory sequences in the mouse genome.
Nature. 2012 Aug 2;488(7409):116-20. doi: 10.1038/nature11243.
3
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.
Science. 2012 Aug 17;337(6096):816-21. doi: 10.1126/science.1225829. Epub 2012 Jun 28.
4
Genomic approaches towards finding cis-regulatory modules in animals.
Nat Rev Genet. 2012 Jun 18;13(7):469-83. doi: 10.1038/nrg3242.
5
Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor.
Cell Stem Cell. 2012 Jul 6;11(1):100-9. doi: 10.1016/j.stem.2012.05.018. Epub 2012 Jun 7.
7
CTCF-mediated functional chromatin interactome in pluripotent cells.
Nat Genet. 2011 Jun 19;43(7):630-8. doi: 10.1038/ng.857.
8
Paused RNA polymerase II as a developmental checkpoint.
Cell. 2011 May 13;145(4):502-11. doi: 10.1016/j.cell.2011.04.021.
9
A unique chromatin signature uncovers early developmental enhancers in humans.
Nature. 2011 Feb 10;470(7333):279-83. doi: 10.1038/nature09692. Epub 2010 Dec 15.
10
Mediator and cohesin connect gene expression and chromatin architecture.
Nature. 2010 Sep 23;467(7314):430-5. doi: 10.1038/nature09380. Epub 2010 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验