Suppr超能文献

铜向超氧化物歧化酶的细胞分布涉及通过膜的支架作用。

Cellular distribution of copper to superoxide dismutase involves scaffolding by membranes.

机构信息

Department of Molecular Biosciences and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208.

出版信息

Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20491-6. doi: 10.1073/pnas.1309820110. Epub 2013 Dec 2.

Abstract

Efficient delivery of copper ions to specific intracellular targets requires copper chaperones that acquire metal cargo through unknown mechanisms. Here we demonstrate that the human and yeast copper chaperones (CCS) for superoxide dismutase 1 (SOD1), long thought to exclusively reside in the cytosol and mitochondrial intermembrane space, can engage negatively charged bilayers through a positively charged lipid-binding interface. The significance of this membrane-binding interface is established through SOD1 activity and genetic complementation studies in Saccharomyces cerevisiae, showing that recruitment of CCS to the membrane is required for activation of SOD1. Moreover, we show that a CCS:SOD1 complex binds to bilayers in vitro and that CCS can interact with human high affinity copper transporter 1. Shifting current paradigms, we propose that CCS-dependent copper acquisition and distribution largely occur at membrane interfaces and that this emerging role of the bilayer may reflect a general mechanistic aspect of cellular transition metal ion acquisition.

摘要

高效地将铜离子递送到特定的细胞内靶标需要铜伴侣蛋白,这些蛋白通过未知的机制获取金属货物。在这里,我们证明人类和酵母的超氧化物歧化酶 1(SOD1)的铜伴侣蛋白(CCS),长期以来被认为只存在于细胞质和线粒体膜间隙中,通过带正电荷的脂质结合界面与带负电荷的双层膜结合。这个膜结合界面的重要性通过在酿酒酵母中的 SOD1 活性和遗传互补研究得到证实,表明 CCS 被招募到膜上是 SOD1 激活所必需的。此外,我们还表明,CCS:SOD1 复合物在体外与双层膜结合,并且 CCS 可以与人类高亲和力铜转运蛋白 1 相互作用。我们提出,颠覆当前的模式,CCS 依赖的铜获取和分布主要发生在膜界面,这种双层膜的新兴作用可能反映了细胞过渡金属离子获取的一般机制方面。

相似文献

1
Cellular distribution of copper to superoxide dismutase involves scaffolding by membranes.
Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20491-6. doi: 10.1073/pnas.1309820110. Epub 2013 Dec 2.
2
Instability of superoxide dismutase 1 of Drosophila in mutants deficient for its cognate copper chaperone.
J Biol Chem. 2008 Dec 19;283(51):35393-401. doi: 10.1074/jbc.M807131200. Epub 2008 Oct 23.
3
An essential role of N-terminal domain of copper chaperone in the enzymatic activation of Cu/Zn-superoxide dismutase.
J Inorg Biochem. 2017 Oct;175:208-216. doi: 10.1016/j.jinorgbio.2017.07.036. Epub 2017 Jul 31.
4
Transcriptional activation in yeast in response to copper deficiency involves copper-zinc superoxide dismutase.
J Biol Chem. 2009 Jan 2;284(1):404-413. doi: 10.1074/jbc.M807027200. Epub 2008 Oct 31.
5
Mia40-dependent oxidation of cysteines in domain I of Ccs1 controls its distribution between mitochondria and the cytosol.
Mol Biol Cell. 2011 Oct;22(20):3749-57. doi: 10.1091/mbc.E11-04-0293. Epub 2011 Aug 24.
6
Regulation of the copper chaperone CCS by XIAP-mediated ubiquitination.
Mol Cell Biol. 2010 Apr;30(8):1923-36. doi: 10.1128/MCB.00900-09. Epub 2010 Feb 12.
7
Activation of Cu,Zn-superoxide dismutase in the absence of oxygen and the copper chaperone CCS.
J Biol Chem. 2009 Aug 14;284(33):21863-21871. doi: 10.1074/jbc.M109.000489. Epub 2009 Jun 19.
8
Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase.
Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2886-91. doi: 10.1073/pnas.040461197.
9
Yeast copper-zinc superoxide dismutase can be activated in the absence of its copper chaperone.
J Biol Inorg Chem. 2013 Dec;18(8):985-92. doi: 10.1007/s00775-013-1047-8. Epub 2013 Sep 24.
10
Copper chaperones: personal escorts for metal ions.
J Bioenerg Biomembr. 2002 Oct;34(5):373-9. doi: 10.1023/a:1021202119942.

引用本文的文献

1
Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases.
Signal Transduct Target Ther. 2025 Feb 3;10(1):31. doi: 10.1038/s41392-024-02071-0.
2
The physiological and pathophysiological roles of copper in the nervous system.
Eur J Neurosci. 2024 Jul;60(1):3505-3543. doi: 10.1111/ejn.16370. Epub 2024 May 15.
3
Deep learning enables the discovery of a novel cuproptosis-inducing molecule for the inhibition of hepatocellular carcinoma.
Acta Pharmacol Sin. 2024 Feb;45(2):391-404. doi: 10.1038/s41401-023-01167-7. Epub 2023 Oct 6.
4
The TbD1 Locus Mediates a Hypoxia-Induced Copper Response in .
Front Microbiol. 2022 Apr 14;13:817952. doi: 10.3389/fmicb.2022.817952. eCollection 2022.
7
Copper metabolism in Saccharomyces cerevisiae: an update.
Biometals. 2021 Feb;34(1):3-14. doi: 10.1007/s10534-020-00264-y. Epub 2020 Oct 30.
8
Copper Sources for Sod1 Activation.
Antioxidants (Basel). 2020 Jun 7;9(6):500. doi: 10.3390/antiox9060500.
9
Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic.
Angew Chem Int Ed Engl. 2021 Apr 19;60(17):9215-9246. doi: 10.1002/anie.202000451. Epub 2020 Nov 19.

本文引用的文献

1
SOD1 integrates signals from oxygen and glucose to repress respiration.
Cell. 2013 Jan 17;152(1-2):224-35. doi: 10.1016/j.cell.2012.11.046.
3
Charting the travels of copper in eukaryotes from yeast to mammals.
Biochim Biophys Acta. 2012 Sep;1823(9):1580-93. doi: 10.1016/j.bbamcr.2012.02.011. Epub 2012 Feb 24.
4
The quantitative proteome of a human cell line.
Mol Syst Biol. 2011 Nov 8;7:549. doi: 10.1038/msb.2011.82.
5
Transition metal homeostasis: from yeast to human disease.
Biometals. 2011 Oct;24(5):785-809. doi: 10.1007/s10534-011-9451-4. Epub 2011 Apr 10.
7
Advances in metal-induced oxidative stress and human disease.
Toxicology. 2011 May 10;283(2-3):65-87. doi: 10.1016/j.tox.2011.03.001. Epub 2011 Mar 23.
8
Human copper transporters: mechanism, role in human diseases and therapeutic potential.
Future Med Chem. 2009 Sep;1(6):1125-42. doi: 10.4155/fmc.09.84.
9
Cell biology of copper.
J Biol Inorg Chem. 2010 Jan;15(1):1-2. doi: 10.1007/s00775-009-0601-x.
10
Structural biology of copper trafficking.
Chem Rev. 2009 Oct;109(10):4760-79. doi: 10.1021/cr900104z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验