Suppr超能文献

解淀粉芽孢杆菌SQR9通过改变其DegU磷酸化调控来增强对黄瓜枯萎病的防治效果

Enhanced control of cucumber wilt disease by Bacillus amyloliquefaciens SQR9 by altering the regulation of Its DegU phosphorylation.

作者信息

Xu Zhihui, Zhang Ruifu, Wang Dandan, Qiu Meihua, Feng Haichao, Zhang Nan, Shen Qirong

机构信息

Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing, China, and National Engineering Research Center for Organic-based Fertilizers and Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China.

出版信息

Appl Environ Microbiol. 2014 May;80(9):2941-50. doi: 10.1128/AEM.03943-13. Epub 2014 Feb 28.

Abstract

Bacillus amyloliquefaciens strain SQR9, isolated from the cucumber rhizosphere, suppresses the growth of Fusarium oxysporum in the cucumber rhizosphere and protects the host plant from pathogen invasion through efficient root colonization. In the Gram-positive bacterium Bacillus, the response regulator DegU regulates genetic competence, swarming motility, biofilm formation, complex colony architecture, and protease production. In this study, we report that stepwise phosphorylation of DegU in B. amyloliquefaciens SQR9 can influence biocontrol activity by coordinating multicellular behavior and regulating the synthesis of antibiotics. Results from in vitro and in situ experiments and quantitative PCR (qPCR) studies demonstrate the following: (i) that the lowest level of phosphorylated DegU (DegU∼P) (the degQ mutation) impairs complex colony architecture, biofilm formation, colonization activities, and biocontrol efficiency of Fusarium wilt disease but increases the production of macrolactin and bacillaene, and (ii) that increasing the level of DegU∼P by degQ and degSU overexpression significantly improves complex colony architecture, biofilm formation, colonization activities, production of the antibiotics bacillomycin D and difficidin, and efficiency of biocontrol of Fusarium wilt disease. The results offer a new strategy to enhance the biocontrol efficacy of Bacillus amyloliquefaciens SQR9.

摘要

解淀粉芽孢杆菌菌株SQR9从黄瓜根际分离得到,它能抑制黄瓜根际尖孢镰刀菌的生长,并通过高效的根部定殖保护宿主植物免受病原菌入侵。在革兰氏阳性菌芽孢杆菌中,应答调节因子DegU调控遗传感受态、群体运动性、生物膜形成、复杂菌落结构以及蛋白酶产生。在本研究中,我们报道了解淀粉芽孢杆菌SQR9中DegU的逐步磷酸化可通过协调多细胞行为和调节抗生素合成来影响生物防治活性。体外和原位实验以及定量PCR(qPCR)研究结果表明:(i)最低水平的磷酸化DegU(DegU∼P)(degQ突变)损害复杂菌落结构、生物膜形成、定殖活性以及对枯萎病的生物防治效率,但增加了大环内酯菌素和芽孢杆菌烯的产生;(ii)通过degQ和degSU过表达增加DegU∼P水平可显著改善复杂菌落结构、生物膜形成、定殖活性、抗生素杆菌霉素D和艰难梭菌素的产生以及对枯萎病的生物防治效率。这些结果为提高解淀粉芽孢杆菌SQR9的生物防治效果提供了一种新策略。

相似文献

1
Enhanced control of cucumber wilt disease by Bacillus amyloliquefaciens SQR9 by altering the regulation of Its DegU phosphorylation.
Appl Environ Microbiol. 2014 May;80(9):2941-50. doi: 10.1128/AEM.03943-13. Epub 2014 Feb 28.
2
Enhanced root colonization and biocontrol activity of Bacillus amyloliquefaciens SQR9 by abrB gene disruption.
Appl Microbiol Biotechnol. 2013 Oct;97(19):8823-30. doi: 10.1007/s00253-012-4572-4. Epub 2012 Nov 30.
3
Enhanced Control of Plant Wilt Disease by a Xylose-Inducible degQ Gene Engineered into Bacillus velezensis Strain SQR9XYQ.
Phytopathology. 2019 Jan;109(1):36-43. doi: 10.1094/PHYTO-02-18-0048-R. Epub 2018 Nov 8.
4
Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens SQR9 by pathogen infection.
FEMS Microbiol Lett. 2014 Apr;353(1):49-56. doi: 10.1111/1574-6968.12406. Epub 2014 Mar 19.
5
Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation.
Appl Environ Microbiol. 2013 Feb;79(3):808-15. doi: 10.1128/AEM.02645-12. Epub 2012 Nov 16.
6
Plant-Microbe Communication Enhances Auxin Biosynthesis by a Root-Associated Bacterium, Bacillus amyloliquefaciens SQR9.
Mol Plant Microbe Interact. 2016 Apr;29(4):324-30. doi: 10.1094/MPMI-10-15-0239-R. Epub 2016 Mar 14.
10
Embedding Bacillus velezensis NH-1 in Microcapsules for Biocontrol of Cucumber Wilt.
Appl Environ Microbiol. 2019 Apr 18;85(9). doi: 10.1128/AEM.03128-18. Print 2019 May 1.

引用本文的文献

2
Secretions Induce Shifts in Macrolactin Composition and Reduction in Antimicrobial Activity of BNC5.
J Agric Food Chem. 2025 May 21;73(20):12525-12536. doi: 10.1021/acs.jafc.5c03489. Epub 2025 May 12.
3
Slow-release nitrogen fertilizer application regulated rhizosphere microbial diversity to increase maize yield.
Front Plant Sci. 2024 Nov 22;15:1481465. doi: 10.3389/fpls.2024.1481465. eCollection 2024.
5
Antagonistic Strain JZ Mediates the Biocontrol of m-1, a Cause of Leaf Spot Disease in Strawberry.
Int J Mol Sci. 2024 Aug 15;25(16):8872. doi: 10.3390/ijms25168872.
7
Root colonization by beneficial rhizobacteria.
FEMS Microbiol Rev. 2024 Jan 12;48(1). doi: 10.1093/femsre/fuad066.
8
Microbiome-Mediated Protection against Pathogens in Woody Plants.
Int J Mol Sci. 2023 Nov 9;24(22):16118. doi: 10.3390/ijms242216118.
10
Role of microbial inoculants as bio fertilizers for improving crop productivity: A review.
Heliyon. 2023 May 16;9(6):e16134. doi: 10.1016/j.heliyon.2023.e16134. eCollection 2023 Jun.

本文引用的文献

2
Antagonistic bacterium Bacillus amyloliquefaciens induces resistance and controls the bacterial wilt of tomato.
Pest Manag Sci. 2013 Nov;69(11):1245-52. doi: 10.1002/ps.3491. Epub 2013 Mar 20.
3
Sticking together: building a biofilm the Bacillus subtilis way.
Nat Rev Microbiol. 2013 Mar;11(3):157-68. doi: 10.1038/nrmicro2960. Epub 2013 Jan 28.
4
Enhanced root colonization and biocontrol activity of Bacillus amyloliquefaciens SQR9 by abrB gene disruption.
Appl Microbiol Biotechnol. 2013 Oct;97(19):8823-30. doi: 10.1007/s00253-012-4572-4. Epub 2012 Nov 30.
5
Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation.
Appl Environ Microbiol. 2013 Feb;79(3):808-15. doi: 10.1128/AEM.02645-12. Epub 2012 Nov 16.
8
A pivotal role for the response regulator DegU in controlling multicellular behaviour.
Microbiology (Reading). 2009 Jan;155(Pt 1):1-8. doi: 10.1099/mic.0.023903-0.
9
Bacillomycin; an antibiotic from Bacillus subtilis active against pathogenic fungi.
Proc Soc Exp Biol Med. 1948 Apr;67(4):539-41. doi: 10.3181/00379727-67-16367.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验