Suppr超能文献

基于正电子发射断层扫描成像和非线性免疫动力学建模的89Zr标记和124I标记cG250的成对比较:透明细胞肾细胞癌小鼠异种移植瘤中碳酸酐酶IX受体的体内结合与内化

Pairwise comparison of 89Zr- and 124I-labeled cG250 based on positron emission tomography imaging and nonlinear immunokinetic modeling: in vivo carbonic anhydrase IX receptor binding and internalization in mouse xenografts of clear-cell renal cell carcinoma.

作者信息

Cheal Sarah M, Punzalan Blesida, Doran Michael G, Evans Michael J, Osborne Joseph R, Lewis Jason S, Zanzonico Pat, Larson Steven M

机构信息

Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.

出版信息

Eur J Nucl Med Mol Imaging. 2014 May;41(5):985-94. doi: 10.1007/s00259-013-2679-1. Epub 2014 Mar 7.

Abstract

PURPOSE

The PET tracer, (124)I-cG250, directed against carbonic anhydrase IX (CAIX) shows promise for presurgical diagnosis of clear-cell renal cell carcinoma (ccRCC) (Divgi et al. in Lancet Oncol 8:304-310, 2007; Divgi et al. in J Clin Oncol 31:187-194, 2013). The radiometal (89)Zr, however, may offer advantages as a surrogate PET nuclide over (124)I in terms of greater tumor uptake and retention (Rice et al. in Semin Nucl Med 41:265-282, 2011). We have developed a nonlinear immunokinetic model to facilitate a quantitative comparison of absolute uptake and antibody turnover between (124)I-cG250 and (89)Zr-cG250 using a human ccRCC xenograft tumor model in mice. We believe that this unique model better relates quantitative imaging data to the salient biological features of tumor antibody-antigen binding and turnover.

METHODS

We conducted experiments with (89)Zr-cG250 and (124)I-cG250 using a human ccRCC cell line (SK-RC-38) to characterize the binding affinity and internalization kinetics of the two tracers in vitro. Serial PET imaging was performed in mice bearing subcutaneous ccRCC tumors to simultaneously detect and quantify time-dependent tumor uptake in vivo. Using the known specific activities of the two tracers, the equilibrium rates of antibody internalization and turnover in the tumors were derived from the PET images using nonlinear compartmental modeling.

RESULTS

The two tracers demonstrated virtually identical tumor cell binding and internalization but showed markedly different retentions in vitro. Superior PET images were obtained using (89)Zr-cG250, owing to the more prolonged trapping of the radiolabel in the tumor and simultaneous washout from normal tissues. Estimates of cG250/CAIX complex turnover were 1.35 - 5.51 × 10(12) molecules per hour per gram of tumor (20 % of receptors internalized per hour), and the ratio of (124)I/(89)Zr atoms released per unit time by tumor was 17.5.

CONCLUSION

Pairwise evaluation of (89)Zr-cG250 and (124)I-cG250 provided the basis for a nonlinear immunokinetic model which yielded quantitative information about the binding and internalization of radioantibody bound to CAIX on tumor cells in vivo. (89)Zr-cG250 is likely to provide high-quality PET images and may be a useful tool to quantify CAIX/cG250 receptor turnover and cG250-accessible antigen density noninvasively in humans.

摘要

目的

靶向碳酸酐酶IX(CAIX)的正电子发射断层显像(PET)示踪剂(124)I-cG250在透明细胞肾细胞癌(ccRCC)的术前诊断中显示出应用前景(迪夫吉等人,《柳叶刀肿瘤学》,第8卷,第304 - 310页,2007年;迪夫吉等人,《临床肿瘤学杂志》,第31卷,第187 - 194页,2013年)。然而,放射性金属(89)Zr作为一种替代PET核素,相较于(124)I,在肿瘤摄取和滞留方面可能具有优势(赖斯等人,《核医学 Seminars》,第41卷,第265 - 282页,2011年)。我们开发了一种非线性免疫动力学模型,以利用小鼠体内人ccRCC异种移植肿瘤模型,对(124)I-cG250和(89)Zr-cG250之间的绝对摄取和抗体周转进行定量比较。我们认为,这个独特的模型能更好地将定量成像数据与肿瘤抗体 - 抗原结合及周转的显著生物学特征联系起来。

方法

我们使用人ccRCC细胞系(SK - RC - 38)对(89)Zr-cG250和(124)I-cG250进行实验,以在体外表征这两种示踪剂的结合亲和力和内化动力学。对携带皮下ccRCC肿瘤的小鼠进行连续PET成像,以在体内同时检测和定量随时间变化的肿瘤摄取。利用这两种示踪剂的已知比活度,通过非线性房室模型从PET图像中得出肿瘤中抗体内化和周转的平衡速率。

结果

这两种示踪剂在肿瘤细胞结合和内化方面几乎相同,但在体外显示出明显不同的滞留情况。使用(89)Zr-cG250获得了更好的PET图像,这是因为放射性标记在肿瘤中的捕获时间更长,同时从正常组织中清除。cG250/CAIX复合物周转的估计值为每克肿瘤每小时1.35 - 5.51×10(12)个分子(每小时20%的受体内化),肿瘤每单位时间释放的(124)I/(89)Zr原子比率为17.5。

结论

(89)Zr-cG250和(124)I-cG250的成对评估为非线性免疫动力学模型提供了基础,该模型产生了关于体内与肿瘤细胞上CAIX结合的放射性抗体的结合和内化的定量信息。(89)Zr-cG250可能会提供高质量的PET图像,并且可能是一种在人体中无创定量CAIX/cG250受体周转和cG250可及抗原密度的有用工具。

相似文献

2
ImmunoPET imaging of renal cell carcinoma with (124)I- and (89)Zr-labeled anti-CAIX monoclonal antibody cG250 in mice.
Cancer Biother Radiopharm. 2013 Sep;28(7):510-5. doi: 10.1089/cbr.2013.1487. Epub 2013 May 22.
4
PET of hypoxia with 89Zr-labeled cG250-F(ab')2 in head and neck tumors.
J Nucl Med. 2010 Jul;51(7):1076-83. doi: 10.2967/jnumed.109.073189. Epub 2010 Jun 16.
5
Optical Imaging of Renal Cell Carcinoma with Anti-Carbonic Anhydrase IX Monoclonal Antibody Girentuximab.
J Nucl Med. 2014 Jun;55(6):1035-40. doi: 10.2967/jnumed.114.137356. Epub 2014 Apr 21.
6
PET radioimmunoscintigraphy of renal cell cancer using 89Zr-labeled cG250 monoclonal antibody in nude rats.
Cancer Biother Radiopharm. 2004 Apr;19(2):155-63. doi: 10.1089/108497804323071922.
7
Imaging of CAIX-expressing xenografts in vivo using 99mTc-HEHEHE-ZCAIX:1 affibody molecule.
Int J Oncol. 2015 Feb;46(2):513-20. doi: 10.3892/ijo.2014.2782. Epub 2014 Nov 27.
8
Preclinical and pilot clinical evaluation of a small-molecule carbonic anhydrase IX targeting PET tracer in clear cell renal cell carcinoma.
Eur J Nucl Med Mol Imaging. 2023 Aug;50(10):3116-3125. doi: 10.1007/s00259-023-06248-7. Epub 2023 May 29.

引用本文的文献

1
Novel radiopharmaceuticals for molecular imaging of renal cell carcinoma.
BMJ Oncol. 2025 Aug 17;4(1):e000645. doi: 10.1136/bmjonc-2024-000645. eCollection 2025.
3
Advances and challenges in immunoPET methodology.
Front Nucl Med. 2024 Feb 19;4:1360710. doi: 10.3389/fnume.2024.1360710. eCollection 2024.
4
High-Affinity NIR-Fluorescent Inhibitors for Tumor Imaging via Carbonic Anhydrase IX.
Bioconjug Chem. 2024 Jun 19;35(6):790-803. doi: 10.1021/acs.bioconjchem.4c00144. Epub 2024 May 15.
5
Clinical validation of translational antibody PBPK model using tissue distribution data generated with Zr-immuno-PET imaging.
J Pharmacokinet Pharmacodyn. 2023 Oct;50(5):377-394. doi: 10.1007/s10928-023-09869-5. Epub 2023 Jun 29.
6
Preclinical and pilot clinical evaluation of a small-molecule carbonic anhydrase IX targeting PET tracer in clear cell renal cell carcinoma.
Eur J Nucl Med Mol Imaging. 2023 Aug;50(10):3116-3125. doi: 10.1007/s00259-023-06248-7. Epub 2023 May 29.
9
ImmunoPET: Antibody-Based PET Imaging in Solid Tumors.
Front Med (Lausanne). 2022 Jun 28;9:916693. doi: 10.3389/fmed.2022.916693. eCollection 2022.

本文引用的文献

1
ImmunoPET imaging of renal cell carcinoma with (124)I- and (89)Zr-labeled anti-CAIX monoclonal antibody cG250 in mice.
Cancer Biother Radiopharm. 2013 Sep;28(7):510-5. doi: 10.1089/cbr.2013.1487. Epub 2013 May 22.
3
Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: results from the REDECT trial.
J Clin Oncol. 2013 Jan 10;31(2):187-94. doi: 10.1200/JCO.2011.41.2445. Epub 2012 Dec 3.
4
Intracellular delivery and trafficking dynamics of a lymphoma-targeting antibody-polymer conjugate.
Mol Pharm. 2012 Dec 3;9(12):3506-14. doi: 10.1021/mp300338s. Epub 2012 Nov 5.
7
In vivo biodistribution and accumulation of 89Zr in mice.
Nucl Med Biol. 2011 Jul;38(5):675-81. doi: 10.1016/j.nucmedbio.2010.12.011. Epub 2011 Mar 3.
8
The next generation of positron emission tomography radiopharmaceuticals in oncology.
Semin Nucl Med. 2011 Jul;41(4):265-82. doi: 10.1053/j.semnuclmed.2011.02.002.
9
Quantitating antibody uptake in vivo: conditional dependence on antigen expression levels.
Mol Imaging Biol. 2011 Aug;13(4):623-32. doi: 10.1007/s11307-010-0397-7.
10
Molecular targeting of carbonic anhydrase IX in mice with hypoxic HT29 colorectal tumor xenografts.
PLoS One. 2010 May 27;5(5):e10857. doi: 10.1371/journal.pone.0010857.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验