Reddy Rachamalla Maheedhar, Mohammed Monzoorul Haque, Mande Sharmila S
Bio-Sciences R&D Division, TCS Innovation Labs, Tata Research Development & Design Centre, Tata Consultancy Services Ltd., 54-B Hadapsar Industrial Estate, Pune 411013, Maharashtra, India.
Genomics. 2014 Feb-Mar;103(2-3):161-8. doi: 10.1016/j.ygeno.2014.02.007. Epub 2014 Mar 5.
A key challenge in analyzing metagenomics data pertains to assembly of sequenced DNA fragments (i.e. reads) originating from various microbes in a given environmental sample. Several existing methodologies can assemble reads originating from a single genome. However, these methodologies cannot be applied for efficient assembly of metagenomic sequence datasets. In this study, we present MetaCAA - a clustering-aided methodology which helps in improving the quality of metagenomic sequence assembly. MetaCAA initially groups sequences constituting a given metagenome into smaller clusters. Subsequently, sequences in each cluster are independently assembled using CAP3, an existing single genome assembly program. Contigs formed in each of the clusters along with the unassembled reads are then subjected to another round of assembly for generating the final set of contigs. Validation using simulated and real-world metagenomic datasets indicates that MetaCAA aids in improving the overall quality of assembly. A software implementation of MetaCAA is available at https://metagenomics.atc.tcs.com/MetaCAA.
分析宏基因组学数据的一个关键挑战涉及对给定环境样本中源自各种微生物的测序DNA片段(即读段)进行组装。现有的几种方法可以组装源自单个基因组的读段。然而,这些方法不能用于宏基因组序列数据集的高效组装。在本研究中,我们提出了MetaCAA——一种聚类辅助方法,有助于提高宏基因组序列组装的质量。MetaCAA首先将构成给定宏基因组的序列分组为较小的簇。随后,使用现有的单基因组组装程序CAP3对每个簇中的序列进行独立组装。然后,对每个簇中形成的重叠群以及未组装的读段进行另一轮组装,以生成最终的重叠群集。使用模拟和真实世界的宏基因组数据集进行的验证表明,MetaCAA有助于提高组装的整体质量。可在https://metagenomics.atc.tcs.com/MetaCAA获得MetaCAA的软件实现。