Suppr超能文献

光驱动 DNA 纳米机器,带有光响应分子引擎。

Light-driven DNA nanomachine with a photoresponsive molecular engine.

机构信息

Graduate School of Engineering, Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603 Japan.

出版信息

Acc Chem Res. 2014 Jun 17;47(6):1663-72. doi: 10.1021/ar400308f. Epub 2014 Mar 11.

Abstract

CONSPECTUS

DNA is regarded as an excellent nanomaterial due to its supramolecular property of duplex formation through A-T and G-C complementary pairs. By simply designing sequences, we can create any desired 2D or 3D nanoarchitecture with DNA. Based on these nanoarchitectures, motional DNA-based nanomachines have also been developed. Most of the nanomachines require molecular fuels to drive them. Typically, a toehold exchange reaction is applied with a complementary DNA strand as a fuel. However, repetitive operation of the machines accumulates waste DNA duplexes in the solution that gradually deteriorate the motional efficiency. Hence, we are facing an "environmental problem" even in the nanoworld. One of the direct solutions to this problem is to use clean energy, such as light. Since light does not contaminate the reaction system, a DNA nanomachine run by a photon engine can overcome the drawback of waste that is a problem with molecular-fueled engines. There are several photoresponsive molecules that convert light energy to mechanical motion through the change of geometry of the molecules; these include spiropyran, diarylethene, stilbene, and azobenzene. Although each molecule has both advantages and drawbacks, azobenzene derivatives are widely used as "molecular photon engines". In this Account, we review light-driven DNA nanomachines mainly focusing on the photoresponsive DNAs that we have developed for the past decade. The basis of our method is installation of an azobenzene into a DNA sequence through a d-threoninol scaffold. Reversible hybridization of the DNA duplex, triggered by trans-cis isomerization of azobenzene in the DNA sequences by irradiation with light, induces mechanical motion of the DNA nanomachine. Moreover we have successfully developed azobenzene derivatives that improve its photoisomerizaition properties. Use of these derivatives and techniques have allowed us to design various DNA machines that demonstrate sophisticated motion in response to lights of different wavelengths without a drop in photoregulatory efficiency. In this Account, we emphasize the advantages of our methods including (1) ease of preparation, (2) comprehensive sequence design of azobenzene-tethered DNA, (3) efficient photoisomerization, and (4) reversible photocontrol of hybridization by irradiation with appropriate wavelengths of light. We believe that photon-fueled DNA nanomachines driven by azobenzene-derivative molecular photon-fueled engines will be soon science rather than "science fiction".

摘要

概述

由于 DNA 通过 A-T 和 G-C 互补碱基对形成双螺旋结构的超分子性质,因此被视为一种极好的纳米材料。通过简单地设计序列,我们可以用 DNA 构建任何所需的 2D 或 3D 纳米结构。基于这些纳米结构,运动的基于 DNA 的纳米机器也已经被开发出来。大多数纳米机器需要分子燃料来驱动它们。通常,应用带有互补 DNA 链的引发链置换反应作为燃料。然而,机器的重复操作会在溶液中积累废 DNA 双链,从而逐渐降低运动效率。因此,即使在纳米世界中,我们也面临着“环境问题”。解决这个问题的一个直接方法是使用清洁能源,例如光。由于光不会污染反应系统,因此由光子引擎驱动的 DNA 纳米机器可以克服分子燃料引擎存在的浪费问题这一缺点。有几种光响应分子可以通过分子几何形状的变化将光能转化为机械运动;其中包括螺吡喃、二芳基乙烯、螺二芴和偶氮苯。虽然每种分子都有优点和缺点,但偶氮苯衍生物被广泛用作“分子光子引擎”。在本综述中,我们主要关注我们在过去十年中开发的光驱动 DNA 纳米机器,回顾了光驱动的 DNA 纳米机器。我们方法的基础是通过 d-苏氨酸醇支架将偶氮苯安装到 DNA 序列中。通过照射光使 DNA 序列中的偶氮苯发生顺反异构化,引发 DNA 双链的可逆杂交,从而诱导 DNA 纳米机器的机械运动。此外,我们还成功开发了改善其光异构化性质的偶氮苯衍生物。这些衍生物和技术的使用使我们能够设计各种 DNA 机器,这些机器可以对不同波长的光做出复杂的响应,而不会降低光调控效率。在本综述中,我们强调了我们的方法的优势,包括(1)易于制备,(2)偶氮苯连接 DNA 的全面序列设计,(3)高效光异构化,以及(4)通过用适当波长的光照射来实现杂交的可逆光控制。我们相信,由偶氮苯衍生物分子光子燃料驱动的光子燃料 DNA 纳米机器将很快成为现实,而不再是“科幻小说”。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验