From the Department of Pharmacology.
J Biol Chem. 2014 May 2;289(18):12593-611. doi: 10.1074/jbc.M113.543215. Epub 2014 Mar 19.
The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) causes stress to which an unfolded protein response is activated to render cell survival or apoptosis (chronic stress). Transcriptional and translational reprogramming is tightly regulated during the unfolded protein response to ensure specific gene expression. The master regulator of this response is the PERK/eIF2α/ATF4 signaling where eIF2α is phosphorylated (eIF2α-P) by the kinase PERK. This signal leads to global translational shutdown, but it also enables translation of the transcription factor ATF4 mRNA. We showed recently that ATF4 induces an anabolic program through the up-regulation of selected amino acid transporters and aminoacyl-tRNA synthetases. Paradoxically, this anabolic program led cells to apoptosis during chronic ER stress in a manner that involved recovery from stress-induced protein synthesis inhibition. By using eIF2α-P-deficient cells as an experimental system, we identified a communicating network of signaling pathways that contribute to the inhibition of protein synthesis during chronic ER stress. This eIF2α-P-independent network includes (i) inhibition of mammalian target of rapamycin kinase protein complex 1 (mTORC1)-targeted protein phosphorylation, (ii) inhibited translation of a selective group of 5'-terminal oligopyrimidine mRNAs (encoding proteins involved in the translation machinery and translationally controlled by mTORC1 signaling), and (iii) inhibited translation of non-5'-terminal oligopyrimidine ribosomal protein mRNAs and ribosomal RNA biogenesis. We propose that the PERK/eIF2α-P/ATF4 signaling acts as a brake in the decline of protein synthesis during chronic ER stress by positively regulating signaling downstream of the mTORC1 activity. These studies advance our knowledge on the complexity of the communicating signaling pathways in controlling protein synthesis rates during chronic stress.
内质网中未折叠/错误折叠蛋白的积累会导致应激,从而激活未折叠蛋白反应以维持细胞存活或凋亡(慢性应激)。在未折叠蛋白反应过程中,转录和翻译的重编程受到严格调控,以确保特定基因的表达。该反应的主要调节因子是 PERK/eIF2α/ATF4 信号通路,其中激酶 PERK 使 eIF2α 磷酸化(eIF2α-P)。该信号导致全局翻译关闭,但它也使转录因子 ATF4 mRNA 的翻译成为可能。我们最近表明,ATF4 通过上调选定的氨基酸转运体和氨酰-tRNA 合成酶诱导合成代谢程序。矛盾的是,在慢性内质网应激期间,这种合成代谢程序导致细胞凋亡,其方式涉及从应激诱导的蛋白质合成抑制中恢复。通过使用 eIF2α-P 缺陷细胞作为实验系统,我们确定了一个信号通路通讯网络,该网络有助于在慢性内质网应激期间抑制蛋白质合成。这个 eIF2α-P 独立的网络包括:(i)抑制哺乳动物雷帕霉素靶蛋白激酶复合物 1(mTORC1)靶向蛋白磷酸化;(ii)抑制一组选择性 5'-末端寡嘧啶 mRNA(编码参与翻译机制和受 mTORC1 信号翻译控制的蛋白质)的翻译;和(iii)抑制非 5'-末端寡嘧啶核糖体蛋白 mRNA 和核糖体 RNA 生物发生的翻译。我们提出,PERK/eIF2α-P/ATF4 信号通路通过正向调节 mTORC1 活性下游的信号通路,在慢性内质网应激期间蛋白质合成下降时充当制动器。这些研究增进了我们对控制慢性应激期间蛋白质合成速率的通讯信号通路复杂性的认识。