Suppr超能文献

复发性体细胞结构变异在儿童骨肉瘤的肿瘤发生中起作用。

Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma.

作者信息

Chen Xiang, Bahrami Armita, Pappo Alberto, Easton John, Dalton James, Hedlund Erin, Ellison David, Shurtleff Sheila, Wu Gang, Wei Lei, Parker Matthew, Rusch Michael, Nagahawatte Panduka, Wu Jianrong, Mao Shenghua, Boggs Kristy, Mulder Heather, Yergeau Donald, Lu Charles, Ding Li, Edmonson Michael, Qu Chunxu, Wang Jianmin, Li Yongjin, Navid Fariba, Daw Najat C, Mardis Elaine R, Wilson Richard K, Downing James R, Zhang Jinghui, Dyer Michael A

机构信息

Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.

Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.

出版信息

Cell Rep. 2014 Apr 10;7(1):104-12. doi: 10.1016/j.celrep.2014.03.003. Epub 2014 Apr 3.

Abstract

Pediatric osteosarcoma is characterized by multiple somatic chromosomal lesions, including structural variations (SVs) and copy number alterations (CNAs). To define the landscape of somatic mutations in pediatric osteosarcoma, we performed whole-genome sequencing of DNA from 20 osteosarcoma tumor samples and matched normal tissue in a discovery cohort, as well as 14 samples in a validation cohort. Single-nucleotide variations (SNVs) exhibited a pattern of localized hypermutation called kataegis in 50% of the tumors. We identified p53 pathway lesions in all tumors in the discovery cohort, nine of which were translocations in the first intron of the TP53 gene. Beyond TP53, the RB1, ATRX, and DLG2 genes showed recurrent somatic alterations in 29%-53% of the tumors. These data highlight the power of whole-genome sequencing for identifying recurrent somatic alterations in cancer genomes that may be missed using other methods.

摘要

儿童骨肉瘤的特征是存在多个体细胞染色体病变,包括结构变异(SVs)和拷贝数改变(CNAs)。为了明确儿童骨肉瘤体细胞突变的全貌,我们对发现队列中的20个骨肉瘤肿瘤样本及其匹配的正常组织的DNA进行了全基因组测序,验证队列中也有14个样本进行了测序。单核苷酸变异(SNVs)在50%的肿瘤中呈现出一种称为kataegis的局部超突变模式。我们在发现队列的所有肿瘤中都鉴定出了p53通路病变,其中9个是TP53基因第一内含子中的易位。除了TP53,RB1、ATRX和DLG2基因在29%-53%的肿瘤中显示出复发性体细胞改变。这些数据凸显了全基因组测序在识别癌症基因组中复发性体细胞改变方面的强大作用,而这些改变可能会被其他方法遗漏。

相似文献

1
Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma.
Cell Rep. 2014 Apr 10;7(1):104-12. doi: 10.1016/j.celrep.2014.03.003. Epub 2014 Apr 3.
2
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.
Clin Orthop Relat Res. 2025 Jan 1;483(1):39-48. doi: 10.1097/CORR.0000000000003161. Epub 2024 Jun 21.
3
Comprehensive mutational profiling identifies new driver events in cutaneous leiomyosarcoma.
Br J Dermatol. 2025 Jan 24;192(2):335-343. doi: 10.1093/bjd/ljae386.
4
Classification of Fibro-Osseous Tumors in the Craniofacial Bones Using DNA Methylation and Copy Number Alterations.
Mod Pathol. 2025 Jun;38(6):100717. doi: 10.1016/j.modpat.2025.100717. Epub 2025 Jan 23.
7
Do Patients of Different Levels of Affluence Receive Different Care for Pediatric Osteosarcomas? One Institution's Experience.
Clin Orthop Relat Res. 2025 Apr 1;483(4):748-758. doi: 10.1097/CORR.0000000000003299. Epub 2024 Oct 30.

引用本文的文献

1
Exploring the genetic alterations of Gorham-Stout disease.
Front Endocrinol (Lausanne). 2025 Aug 19;16:1654497. doi: 10.3389/fendo.2025.1654497. eCollection 2025.
3
Aberrant EZHIP expression drives tumorigenesis in osteosarcoma.
Nat Commun. 2025 Jul 22;16(1):6752. doi: 10.1038/s41467-025-61558-8.
4
Genetic Analysis of Osteosarcoma Cells in a 9-year-old Boy: Genes Involved in Cell Cycle Control.
Acta Med Acad. 2025 Apr;54(1):56-65. doi: 10.5644/ama2006-124.474.
5
Immunosuppressive Tumor Microenvironment of Osteosarcoma.
Cancers (Basel). 2025 Jun 24;17(13):2117. doi: 10.3390/cancers17132117.
8
Chromoanagenesis in Osteosarcoma.
Biomolecules. 2025 Jun 7;15(6):833. doi: 10.3390/biom15060833.
10
Integrating Radiogenomics and Machine Learning in Musculoskeletal Oncology Care.
Diagnostics (Basel). 2025 May 29;15(11):1377. doi: 10.3390/diagnostics15111377.

本文引用的文献

1
A genomic random interval model for statistical analysis of genomic lesion data.
Bioinformatics. 2013 Sep 1;29(17):2088-95. doi: 10.1093/bioinformatics/btt372. Epub 2013 Jul 10.
2
Punctuated evolution of prostate cancer genomes.
Cell. 2013 Apr 25;153(3):666-77. doi: 10.1016/j.cell.2013.03.021.
3
APOBEC3B is an enzymatic source of mutation in breast cancer.
Nature. 2013 Feb 21;494(7437):366-70. doi: 10.1038/nature11881. Epub 2013 Feb 6.
4
The mutant p53 mouse as a pre-clinical model.
Oncogene. 2013 Sep 12;32(37):4325-30. doi: 10.1038/onc.2012.610. Epub 2013 Jan 14.
5
AID/APOBEC cytosine deaminase induces genome-wide kataegis.
Biol Direct. 2012 Dec 18;7:47; discussion 47. doi: 10.1186/1745-6150-7-47.
6
Novel mutations target distinct subgroups of medulloblastoma.
Nature. 2012 Aug 2;488(7409):43-8. doi: 10.1038/nature11213.
7
The Pediatric Cancer Genome Project.
Nat Genet. 2012 May 29;44(6):619-22. doi: 10.1038/ng.2287.
8
Mutational processes molding the genomes of 21 breast cancers.
Cell. 2012 May 25;149(5):979-93. doi: 10.1016/j.cell.2012.04.024. Epub 2012 May 17.
9
Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions.
Mol Cell. 2012 May 25;46(4):424-35. doi: 10.1016/j.molcel.2012.03.030. Epub 2012 May 17.
10
Association of age at diagnosis and genetic mutations in patients with neuroblastoma.
JAMA. 2012 Mar 14;307(10):1062-71. doi: 10.1001/jama.2012.228.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验