Miller Eric C, Teravskis Peter J, Dummer Benjamin W, Zhao Xiaohui, Huganir Richard L, Liao Dezhi
Department of Neuroscience, University of Minnesota, 2101 6th St. SE, Minneapolis, MN, 55455, USA; Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA; N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA.
Eur J Neurosci. 2014 Apr;39(7):1214-24. doi: 10.1111/ejn.12507.
In our previous studies, phosphorylation-dependent tau mislocalization to dendritic spines resulted in early cognitive and synaptic deficits. It is well known that amyloid beta (Aβ) oligomers cause synaptic dysfunction by inducing calcineurin-dependent AMPA receptor (AMPAR) internalization. However, it is unknown whether Aβ-induced synaptic deficits depend upon tau phosphorylation. It is also unknown whether changes in tau can cause calcineurin-dependent loss of AMPARs in synapses. Here, we show that tau mislocalizes to dendritic spines in cultured hippocampal neurons from APPSwe Alzheimer's disease (AD)-transgenic mice and in cultured rat hippocampal neurons treated with soluble Aβ oligomers. Interestingly, Aβ treatment also impairs synaptic function by decreasing the amplitude of miniature excitatory postsynaptic currents (mEPSCs). The above tau mislocalization and Aβ-induced synaptic impairment are both diminished by the expression of AP tau, indicating that these events require tau phosphorylation. The phosphatase activity of calcineurin is important for AMPAR internalization via dephosphorylation of GluA1 residue S845. The effects of Aβ oligomers on mEPSCs are blocked by the calcineurin inhibitor FK506. Aβ-induced loss of AMPARs is diminished in neurons from knock-in mice expressing S845A mutant GluA1 AMPA glutamate receptor subunits. This finding suggests that changes in phosphorylation state at S845 are involved in this pathogenic cascade. Furthermore, FK506 rescues deficits in surface AMPAR clustering on dendritic spines in neurons cultured from transgenic mice expressing P301L tau proteins. Together, our results support the role of tau and calcineurin as two intermediate signaling molecules between Aβ initiation and eventual synaptic dysfunction early in AD pathogenesis.
在我们之前的研究中,磷酸化依赖性的tau蛋白错误定位于树突棘导致了早期认知和突触缺陷。众所周知,淀粉样β(Aβ)寡聚体通过诱导钙调神经磷酸酶依赖性的α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPAR)内化而导致突触功能障碍。然而,尚不清楚Aβ诱导的突触缺陷是否依赖于tau蛋白磷酸化。tau蛋白的变化是否会导致突触中钙调神经磷酸酶依赖性的AMPAR丢失也不清楚。在这里,我们表明tau蛋白在来自APPswe阿尔茨海默病(AD)转基因小鼠的培养海马神经元以及用可溶性Aβ寡聚体处理的培养大鼠海马神经元中错误定位于树突棘。有趣的是,Aβ处理还通过降低微小兴奋性突触后电流(mEPSCs)的幅度来损害突触功能。上述tau蛋白错误定位和Aβ诱导的突触损伤都因AP tau的表达而减轻,这表明这些事件需要tau蛋白磷酸化。钙调神经磷酸酶的磷酸酶活性对于通过去磷酸化GluA1残基S845实现的AMPAR内化很重要。钙调神经磷酸酶抑制剂FK506可阻断Aβ寡聚体对mEPSCs的影响。在表达S845A突变型GluA1 AMPA谷氨酸受体亚基的敲入小鼠的神经元中,Aβ诱导的AMPAR丢失减少。这一发现表明S845处磷酸化状态的变化参与了这一致病级联反应。此外,FK506挽救了表达P301L tau蛋白的转基因小鼠培养的神经元中树突棘表面AMPAR聚集的缺陷。总之,我们的结果支持tau蛋白和钙调神经磷酸酶作为AD发病机制早期Aβ引发和最终突触功能障碍之间的两个中间信号分子的作用。