Suppr超能文献

虎甲利用一种具有半步延迟的比例控制律来追捕猎物。

Tiger beetles pursue prey using a proportional control law with a delay of one half-stride.

作者信息

Haselsteiner Andreas F, Gilbert Cole, Wang Z Jane

机构信息

Department of Mechanical and Aerospace Engineering, Cornell University, , Ithaca, NY 14853, USA.

出版信息

J R Soc Interface. 2014 Apr 9;11(95):20140216. doi: 10.1098/rsif.2014.0216. Print 2014 Jun 6.

Abstract

Tiger beetles are fast diurnal predators capable of chasing prey under closed-loop visual guidance. We investigated this control system using statistical analyses of high-speed digital recordings of beetles chasing a moving prey dummy in a laboratory arena. Correlation analyses reveal that the beetle uses a proportional control law in which the angular position of the prey relative to the beetle's body axis drives the beetle's angular velocity with a delay of about 28 ms. The proportionality coefficient or system gain, 12 s(-1), is just below critical damping. Pursuit simulations using the derived control law predict angular orientation during pursuits with a residual error of about 7°. This is of the same order of magnitude as the oscillation imposed by the beetle's alternating tripod gait, which was not factored into the control law. The system delay of 28 ms equals a half-stride period, i.e. the time between the touch down of alternating tripods. Based on these results, we propose a physical interpretation of the observed control law: to turn towards its prey, the beetle on average exerts a sideways force proportional to the angular position of the prey measured a half-stride earlier.

摘要

虎甲是昼行性的快速捕食者,能够在闭环视觉引导下追捕猎物。我们在实验室场地中,通过对甲虫追捕移动猎物模型的高速数字记录进行统计分析,研究了这种控制系统。相关性分析表明,甲虫采用比例控制法则,其中猎物相对于甲虫身体轴线的角位置驱动甲虫的角速度,延迟约28毫秒。比例系数或系统增益为12 s(-1),略低于临界阻尼。使用推导的控制法则进行的追踪模拟预测了追踪过程中的角取向,残余误差约为7°。这与甲虫交替三脚架步态所产生的振荡幅度相同,而该振荡未被纳入控制法则中。28毫秒的系统延迟等于半步周期,即交替三脚架着地之间的时间。基于这些结果,我们对观察到的控制法则提出了一种物理解释:为了转向其猎物,甲虫平均施加一个与半步前测量的猎物角位置成比例的侧向力。

相似文献

1
Tiger beetles pursue prey using a proportional control law with a delay of one half-stride.
J R Soc Interface. 2014 Apr 9;11(95):20140216. doi: 10.1098/rsif.2014.0216. Print 2014 Jun 6.
2
A tiger beetle's pursuit of prey depends on distance.
Phys Biol. 2017 Apr 20;14(2):026004. doi: 10.1088/1478-3975/aa62b9.
3
Dynamic visual cues induce jaw opening and closing by tiger beetles during pursuit of prey.
Biol Lett. 2014 Nov;10(11):20140760. doi: 10.1098/rsbl.2014.0760.
5
Static antennae act as locomotory guides that compensate for visual motion blur in a diurnal, keen-eyed predator.
Proc Biol Sci. 2014 Feb 5;281(1779):20133072. doi: 10.1098/rspb.2013.3072. Print 2014 Mar 22.
6
Adult tiger beetles Cicindela gemmata modify their foraging strategy in different hunting contexts.
Insect Sci. 2023 Dec;30(6):1749-1758. doi: 10.1111/1744-7917.13192. Epub 2023 May 8.
8
Physics-based simulations of aerial attacks by peregrine falcons reveal that stooping at high speed maximizes catch success against agile prey.
PLoS Comput Biol. 2018 Apr 12;14(4):e1006044. doi: 10.1371/journal.pcbi.1006044. eCollection 2018 Apr.
10

引用本文的文献

1
Fish couple forecasting with feedback control to chase and capture moving prey.
Proc Biol Sci. 2024 Sep;291(2031):20241463. doi: 10.1098/rspb.2024.1463. Epub 2024 Sep 25.
2
Visual versus visual-inertial guidance in hawks pursuing terrestrial targets.
J R Soc Interface. 2023 Jun;20(203):20230071. doi: 10.1098/rsif.2023.0071. Epub 2023 Jun 14.
3
Gap selection and steering during obstacle avoidance in pigeons.
J Exp Biol. 2023 Jan 15;226(2). doi: 10.1242/jeb.244215. Epub 2023 Jan 23.
5
The persistent-predation strategy of the red lionfish ( ).
Proc Biol Sci. 2022 Aug 10;289(1980):20221085. doi: 10.1098/rspb.2022.1085. Epub 2022 Aug 3.
6
Avoiding obstacles while intercepting a moving target: a miniature fly's solution.
J Exp Biol. 2022 Feb 15;225(4). doi: 10.1242/jeb.243568.
7
Gravity and active acceleration limit the ability of killer flies () to steer towards prey when attacking from above.
J R Soc Interface. 2021 May;18(178):20210058. doi: 10.1098/rsif.2021.0058. Epub 2021 May 26.
8
Two pursuit strategies for a single sensorimotor control task in blowfly.
Sci Rep. 2020 Nov 27;10(1):20762. doi: 10.1038/s41598-020-77607-9.
9
Prey speed influences the speed and structure of the raptorial strike of a 'sit-and-wait' predator.
Biol Lett. 2020 May;16(5):20200098. doi: 10.1098/rsbl.2020.0098. Epub 2020 May 13.
10
Elements of a stochastic 3D prediction engine in larval zebrafish prey capture.
Elife. 2019 Nov 26;8:e51975. doi: 10.7554/eLife.51975.

本文引用的文献

1
A comparative approach to closed-loop computation.
Curr Opin Neurobiol. 2014 Apr;25:54-62. doi: 10.1016/j.conb.2013.11.005. Epub 2013 Dec 17.
2
Eight pairs of descending visual neurons in the dragonfly give wing motor centers accurate population vector of prey direction.
Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):696-701. doi: 10.1073/pnas.1210489109. Epub 2012 Dec 3.
3
Visual control of prey-capture flight in dragonflies.
Curr Opin Neurobiol. 2012 Apr;22(2):267-71. doi: 10.1016/j.conb.2011.11.015. Epub 2011 Dec 21.
4
Spikes alone do not behavior make: why neuroscience needs biomechanics.
Curr Opin Neurobiol. 2011 Oct;21(5):816-22. doi: 10.1016/j.conb.2011.05.017. Epub 2011 Jun 15.
5
Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4820-4. doi: 10.1073/pnas.1000615107. Epub 2010 Mar 1.
6
Optimal localization by pointing off axis.
Science. 2010 Feb 5;327(5966):701-4. doi: 10.1126/science.1183310.
7
Are bigger brains better?
Curr Biol. 2009 Nov 17;19(21):R995-R1008. doi: 10.1016/j.cub.2009.08.023.
8
Small circuits for large tasks: high-speed decision-making in archerfish.
Science. 2008 Jan 4;319(5859):104-6. doi: 10.1126/science.1149265.
9
Eye movements and target fixation during dragonfly prey-interception flights.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2007 Jul;193(7):685-93. doi: 10.1007/s00359-007-0223-0. Epub 2007 May 9.
10
Task-level control of rapid wall following in the American cockroach.
J Exp Biol. 2006 May;209(Pt 9):1617-29. doi: 10.1242/jeb.02166.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验