Suppr超能文献

非线性有限差分泊松-玻尔兹曼求解器的性能

Performance of Nonlinear Finite-Difference Poisson-Boltzmann Solvers.

作者信息

Cai Qin, Hsieh Meng-Juei, Wang Jun, Luo Ray

机构信息

Department of Biomedical Engineering, University of California, Irvine, CA 92697 ; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697.

Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697.

出版信息

J Chem Theory Comput. 2010 Jan 12;6(1):203-211. doi: 10.1021/ct900381r.

Abstract

We implemented and optimized seven finite-difference solvers for the full nonlinear Poisson-Boltzmann equation in biomolecular applications, including four relaxation methods, one conjugate gradient method, and two inexact Newton methods. The performance of the seven solvers was extensively evaluated with a large number of nucleic acids and proteins. Worth noting is the inexact Newton method in our analysis. We investigated the role of linear solvers in its performance by incorporating the incomplete Cholesky conjugate gradient and the geometric multigrid into its inner linear loop. We tailored and optimized both linear solvers for faster convergence rate. In addition, we explored strategies to optimize the successive over-relaxation method to reduce its convergence failures without too much sacrifice in its convergence rate. Specifically we attempted to adaptively change the relaxation parameter and to utilize the damping strategy from the inexact Newton method to improve the successive over-relaxation method. Our analysis shows that the nonlinear methods accompanied with a functional-assisted strategy, such as the conjugate gradient method and the inexact Newton method, can guarantee convergence in the tested molecules. Especially the inexact Newton method exhibits impressive performance when it is combined with highly efficient linear solvers that are tailored for its special requirement.

摘要

我们实现并优化了七种用于生物分子应用中完整非线性泊松 - 玻尔兹曼方程的有限差分求解器,包括四种松弛方法、一种共轭梯度法和两种不精确牛顿法。使用大量核酸和蛋白质对这七种求解器的性能进行了广泛评估。在我们的分析中,值得注意的是不精确牛顿法。我们通过将不完全乔列斯基共轭梯度法和几何多重网格法纳入其内部线性循环,研究了线性求解器在其性能中的作用。我们对这两种线性求解器进行了定制和优化,以实现更快的收敛速度。此外,我们探索了优化逐次超松弛法的策略,以减少其收敛失败情况,同时又不会在收敛速度上有太大牺牲。具体而言,我们尝试自适应地改变松弛参数,并采用不精确牛顿法中的阻尼策略来改进逐次超松弛法。我们的分析表明,伴随功能辅助策略的非线性方法,如共轭梯度法和不精确牛顿法,能够保证在测试分子中收敛。特别是当不精确牛顿法与针对其特殊要求量身定制的高效线性求解器相结合时,表现出令人印象深刻的性能。

相似文献

1
Performance of Nonlinear Finite-Difference Poisson-Boltzmann Solvers.
J Chem Theory Comput. 2010 Jan 12;6(1):203-211. doi: 10.1021/ct900381r.
2
Assessment of linear finite-difference Poisson-Boltzmann solvers.
J Comput Chem. 2010 Jun;31(8):1689-98. doi: 10.1002/jcc.21456.
4
AQUASOL: An efficient solver for the dipolar Poisson-Boltzmann-Langevin equation.
J Chem Phys. 2010 Feb 14;132(6):064101. doi: 10.1063/1.3298862.
5
Applications of MMPBSA to Membrane Proteins I: Efficient Numerical Solutions of Periodic Poisson-Boltzmann Equation.
J Chem Inf Model. 2015 Oct 26;55(10):2187-99. doi: 10.1021/acs.jcim.5b00341. Epub 2015 Oct 5.
6
Robustness and Efficiency of Poisson-Boltzmann Modeling on Graphics Processing Units.
J Chem Inf Model. 2019 Jan 28;59(1):409-420. doi: 10.1021/acs.jcim.8b00761. Epub 2018 Dec 31.
9
Acceleration of Linear Finite-Difference Poisson-Boltzmann Methods on Graphics Processing Units.
J Chem Theory Comput. 2017 Jul 11;13(7):3378-3387. doi: 10.1021/acs.jctc.7b00336. Epub 2017 Jun 7.
10
Solving the Fluid Pressure Poisson Equation Using Multigrid-Evaluation and Improvements.
IEEE Trans Vis Comput Graph. 2016 Nov;22(11):2480-92. doi: 10.1109/TVCG.2015.2511734. Epub 2015 Dec 23.

引用本文的文献

2
Poisson-Boltzmann-based machine learning model for electrostatic analysis.
Biophys J. 2024 Sep 3;123(17):2807-2814. doi: 10.1016/j.bpj.2024.02.008. Epub 2024 Feb 15.
3
AmberTools.
J Chem Inf Model. 2023 Oct 23;63(20):6183-6191. doi: 10.1021/acs.jcim.3c01153. Epub 2023 Oct 8.
4
Optimal Scheme to Achieve Energy Conservation in Induced Dipole Models.
J Chem Theory Comput. 2023 Aug 8;19(15):5047-5057. doi: 10.1021/acs.jctc.3c00226. Epub 2023 Jul 13.
5
Comprehensive evaluation of end-point free energy techniques in carboxylated-pillar[6]arene host-guest binding: I. Standard procedure.
J Comput Aided Mol Des. 2022 Oct;36(10):735-752. doi: 10.1007/s10822-022-00475-0. Epub 2022 Sep 22.
6
RNA Electrostatics: How Ribozymes Engineer Active Sites to Enable Catalysis.
J Phys Chem B. 2022 Aug 18;126(32):5982-5990. doi: 10.1021/acs.jpcb.2c03727. Epub 2022 Jul 21.
8
QM/MM Energy Decomposition Using the Interacting Quantum Atoms Approach.
J Chem Inf Model. 2022 Mar 28;62(6):1510-1524. doi: 10.1021/acs.jcim.1c01372. Epub 2022 Feb 25.
10
Machine-Learned Molecular Surface and Its Application to Implicit Solvent Simulations.
J Chem Theory Comput. 2021 Oct 12;17(10):6214-6224. doi: 10.1021/acs.jctc.1c00492. Epub 2021 Sep 13.

本文引用的文献

2
On removal of charge singularity in Poisson-Boltzmann equation.
J Chem Phys. 2009 Apr 14;130(14):145101. doi: 10.1063/1.3099708.
4
Implicit solvent models.
Biophys Chem. 1999 Apr 5;78(1-2):1-20. doi: 10.1016/s0301-4622(98)00226-9.
5
7
Electrostatics calculations: latest methodological advances.
Curr Opin Struct Biol. 2006 Apr;16(2):142-51. doi: 10.1016/j.sbi.2006.03.001. Epub 2006 Mar 15.
8
10
Improving implicit solvent simulations: a Poisson-centric view.
Curr Opin Struct Biol. 2005 Apr;15(2):137-43. doi: 10.1016/j.sbi.2005.02.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验